FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation

FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者

基本信息

  • 批准号:
    2326187
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Globally, economies rely on safe air travel; however, with human error accounting for 70% of aircraft accidents, an emphasis needs to be placed on helping those responsible for ensuring the safety and reliability of modern and future aircrafts. Aviation maintenance technicians routinely struggle to keep pace with the needs of the aviation industry as they are impacted by a hazardous work environment, high cognitive load, a complex task, and growing worker shortages, and this struggle is only poised to grow as the need for them is slated to increase in the future. This Future of Work at the Human-Technology Frontier - Research: Large (FW-HTF-RL) award supports a collaborative research project to address this challenge, led by a group of universities, professional organizations and industry partners: Clemson University, Purdue University, Greenville Technical College, SA Technologies, National Center for Autonomous Technologies, Aviation Technician Education Council, ChooseAerospace, Frontier Airlines, AAR, Republic Airways, Atlas Air, Stevens Aerospace, Vericor, AMFA, and Lockheed Martin. The goal of this research project is to merge expertise and technological advancements in Artificial Intelligence (AI) and Extended Reality (XR) technologies to enhance the cognitive capabilities of aviation maintenance technicians during inspection tasks. The central idea is that this augmentation could increase their inspection capabilities, reduce workload, and ultimately reduce the number of aviation accidents caused by maintenance errors. In the long term, these efforts will continuously improve the overall health of both future aviation maintenance technicians and aircraft fleets. Furthermore, while this work has prioritized the immediate exploration of the aviation maintenance sector, similar domains that leverage information-rich tasks, visual inspection, and routine maintenance stand to benefit from the demonstrated technological integrations. This project brings together several disciplines, including Human Factors Engineering, Computer Science, Human-Computer Interaction, Behavioral and Social Science, Economics, and Aviation Maintenance. The investigator team is structured to achieve multiple convergent goals. First, this work leverages human factors, behavioral science, and human-computer interaction disciplines to understand the impacts that merged AI and XR technologies will have on the cognitive process of aviation maintenance technicians and the potential risks associated with the integration of these technologies into this workforce. Second, this research project leverages computer science and human-computer interaction to design and develop novel AI models that perform aircraft inspections and make maintenance recommendations based on information gathered through XR technologies. The research team will help design communication and interaction paradigms so future aviation maintenance technicians can understand and accept these recommendations. Third, the project could provide the breakthrough integration of AI and XR technology within the aviation maintenance field to help aviation maintenance technicians in real time. Finally, this effort continuously synthesizes the results of the other three goals with society and workforce-derived data to quantify the economic feasibility and impact that AI and XR technologies will have on the aviation maintenance domain and adjacent workplace sectors. This project has been funded by the Future of Work at the Human-Technology Frontier cross-directorate program to promote a deeper fundamental understanding of the interdependent human-technology partnership in work contexts by advancing the design of intelligent work technologies that operate in harmony with human workers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在全球范围内,经济依赖于安全的航空旅行;然而,由于人为错误占飞机事故的70%,因此需要重点帮助那些负责确保现代和未来飞机安全性和可靠性的人。航空维修技术人员经常努力跟上航空业的需求,因为他们受到危险的工作环境,高认知负荷,复杂的任务和日益严重的工人短缺的影响,而且这种斗争只会随着未来对他们的需求的增加而增长。人类技术前沿工作的未来-研究:大型(FW-HTF-RL)奖支持一个合作研究项目,以应对这一挑战,由一组大学,专业组织和行业合作伙伴领导:克莱姆森大学,普渡大学,格林维尔技术学院,SA技术,国家自主技术中心,航空技术员教育理事会,ChooseAerospace,Frontier Airlines,AAR,共和航空公司、阿特拉斯航空公司、史蒂文斯航空公司、Vericor公司、AMFA公司和洛克希德·马丁公司。该研究项目的目标是融合人工智能(AI)和延展实境(XR)技术的专业知识和技术进步,以提高航空维修技术人员在检查任务中的认知能力。 中心思想是,这种增强可以提高他们的检查能力,减少工作量,并最终减少因维护错误造成的航空事故数量。从长远来看,这些努力将不断改善未来航空维修技术人员和机队的整体健康状况。此外,虽然这项工作优先考虑航空维修部门的立即探索,但利用信息丰富的任务,目视检查和日常维护的类似领域将受益于所展示的技术集成。该项目汇集了多个学科,包括人因工程,计算机科学,人机交互,行为和社会科学,经济学和航空维修。研究者团队的结构旨在实现多个趋同目标。首先,这项工作利用人为因素、行为科学和人机交互学科来了解合并的AI和XR技术对航空维修技术人员认知过程的影响,以及将这些技术整合到这支劳动力队伍中的潜在风险。其次,该研究项目利用计算机科学和人机交互来设计和开发新的人工智能模型,这些模型可以根据通过XR技术收集的信息进行飞机检查并提出维护建议。研究团队将帮助设计沟通和互动模式,以便未来的航空维修技术人员能够理解和接受这些建议。第三,该项目可以在航空维修领域提供人工智能和XR技术的突破性整合,以帮助航空维修技术人员真实的时间。最后,这一努力将其他三个目标的结果与社会和劳动力数据相结合,以量化人工智能和XR技术对航空维修领域和邻近工作场所的经济可行性和影响。该项目由人类与技术前沿跨部门计划的未来工作资助,旨在促进对相互依存的人类的更深入的基本了解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Damon Lercel其他文献

Damon Lercel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

转HTFα对脊髓继发性损伤和微循环重建的影响
  • 批准号:
    39970755
  • 批准年份:
    1999
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

FW-HTF-RL: Success via a Human-Assistive Wearable Technology Partnership Fostering Neurodiverse Individuals' Work Success via an Assistive Wearable Technology
FW-HTF-RL:通过人类辅助可穿戴技术合作伙伴关系取得成功通过辅助可穿戴技术促进神经多样性个体的工作成功
  • 批准号:
    2326270
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326407
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326408
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
  • 批准号:
    2326146
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326169
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
  • 批准号:
    2326186
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326194
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Elevating Farm Worker-Robot Collaborations in Agri-Food Ecosystems
FW-HTF-RL/协作研究:提升农业食品生态系统中的农场工人与机器人协作
  • 批准号:
    2326310
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了