NRI: INT: Adaptive Bio-inspired Co-Robot algorithms for volcano monitoring

NRI:INT:用于火山监测的自适应仿生协作机器人算法

基本信息

  • 批准号:
    2024520
  • 负责人:
  • 金额:
    $ 149.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

There are an estimated 500 volcanoes that emit volcanic gases to the atmosphere. This project will design, build, and field-test a collaborative swarm of flying robots called the Volcano Co-robot Adaptive Natural algorithms (VolCAN) swarm. The VolCAN swarm will transform our ability to forecast volcanic eruptions. The swarm consists of multiple autonomous aerial drones that use algorithms inspired by biology to monitor the unpredictable environments surrounding volcanoes. In addition to monitoring gasses that precede volcanic eruptions, thereby protecting human lives, it will also measure how much carbon dioxide is emitted from volcanoes to better understand how they contribute to the global carbon budget. The VolCAN swarm can adapt to environmental conditions autonomously in real time, and it can also be guided by scientists to collect scientific data during the battery-limited flights of small drones. Our approach leverages the advantages of bio-inspired algorithms that are fast rather than perfectly accurate, and resilient rather than centrally controlled. The project will broaden participation in computing by involving students from underrepresented groups in both robotics research and programming courses.This project will develop, analyze and rigorously test a co-robot swarm of unpiloted air vehicles (UAVs) that collect valuable scientific data in dynamic and unpredictable environments. The VolCAN swarm will use bio-inspired algorithms to detect CO2 plumes, descend plume gradients to measure maximum flux of CO2 from ground sources, estimate plume size, and infer maps of multiple CO2 sources over hundreds of square kilometers. Given battery limitations on flight times and dangerous, unpredictable conditions, the algorithms prioritize speed, robustness and interpretability over high accuracy. The novel bio-inspired algorithms scale to cover vast areas, adapt to the sensed environment to focus monitoring on the most important regions in real time, and are fast enough to collect many simultaneous emissions within the limited battery life of small UAV. Theoretical analyses will determine bounds on the speed and convergence times of the algorithms, and simulations and frequent field tests will measure the performance of the VolCAN system in rigorous, replicated experiments. Additionally, the project will demonstrate that scientists can operate the VolCAN swarm to collect data in the field with either fully autonomous adaptive surveillance or with scientist guidance. This approach combines human flexibility and judgment with the speed and mobility of a UAV swarm. The project will demonstrate the broad applicability of the VolCAN swarm in environmental monitoring applications in experiments to measure methane emissions from pipelines and assess ecological health of plant communities. It will also show that bio-inspired robots can function outside of highly-structured factories, labs, and warehouses to gather valuable scientific data in the hazardous and unpredictable environments of active volcanoes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
据估计,有500座火山向大气排放火山气体。这个项目将设计、建造和现场测试一个协作的飞行机器人群,称为火山联合机器人自适应自然算法(VOLCAN)群。火山群将改变我们预测火山喷发的能力。该蜂群由多架自动无人机组成,这些无人机使用受生物学启发的算法来监测火山周围不可预测的环境。除了监测火山喷发前的气体,从而保护人类生命之外,它还将测量火山排放的二氧化碳数量,以更好地了解它们对全球碳预算的贡献。伏尔坎蜂群可以实时自主适应环境条件,还可以在科学家的引导下,在小型无人机电池有限的飞行中收集科学数据。我们的方法利用了受生物启发的算法的优势,这些算法速度快而不是完全准确,具有弹性而不是中央控制。该项目将通过让来自未被充分代表的群体的学生参加机器人学研究和编程课程来扩大对计算的参与。该项目将开发、分析和严格测试无人驾驶飞行器(UAV)的协作机器人群,这些无人机在动态和不可预测的环境中收集有价值的科学数据。伏尔坎蜂群将使用生物启发算法来探测二氧化碳羽流,降低羽流梯度以测量来自地面来源的二氧化碳的最大通量,估计羽流大小,并推断数百平方公里内多个二氧化碳来源的地图。考虑到电池对飞行时间和危险、不可预测条件的限制,这些算法优先考虑速度、稳健性和可解释性,而不是高精度。这种新颖的生物启发算法可以覆盖广阔的区域,适应传感环境,实时监控最重要的区域,并且速度足够快,可以在小型无人机有限的电池寿命内收集许多同时排放的气体。理论分析将决定算法的速度和收敛时间的界限,模拟和频繁的现场测试将在严格的重复实验中测量Volcan系统的性能。此外,该项目将证明,科学家可以通过完全自主的自适应监视或在科学家的指导下操作狼群在野外收集数据。这种方法将人类的灵活性和判断力与无人机群的速度和机动性结合在一起。该项目将展示Volcan群体在环境监测应用中的广泛适用性,这些应用包括测量管道甲烷排放和评估植物群落生态健康的实验。它还将表明,受生物启发的机器人可以在高度结构的工厂、实验室和仓库之外工作,在危险和不可预测的活火山环境中收集有价值的科学数据。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Control for Cooperative Aerial Transportation Using Catenary Robots
使用悬链机器人进行协作空中运输的自适应控制
LoCUS: A Multi-Robot Loss-Tolerant Algorithm for Surveying Volcanic Plumes
Machine learning feature analysis illuminates disparity between E3SM climate models and observed climate change
机器学习特征分析揭示了 E3SM 气候模型与观测到的气候变化之间的差异
  • DOI:
    10.1016/j.cam.2021.113451
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Nichol, J. Jake;Peterson, Matthew G.;Peterson, Kara J.;Fricke, G. Matthew;Moses, Melanie E.
  • 通讯作者:
    Moses, Melanie E.
Boundary Sketching with Asymptotically Optimal Distance and Rotation
具有渐进最佳距离和旋转的边界草图
Aerial Survey Robotics in Extreme Environments: Mapping Volcanic CO2 Emissions With Flocking UAVs
极端环境下的航测机器人:利用无人机集群绘制火山二氧化碳排放图
  • DOI:
    10.3389/fcteg.2022.836720
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ericksen, John;Fricke, G. Matthew;Nowicki, Scott;Fischer, Tobias P.;Hayes, Julie C.;Rosenberger, Karissa;Wolf, Samantha R.;Fierro, Rafael;Moses, Melanie E.
  • 通讯作者:
    Moses, Melanie E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melanie Moses其他文献

Impacts of Air-Fuel Stratification in ACI Combustion on Particulate Matter and Gaseous Emissions
ACI 燃烧中空气-燃料分层对颗粒物和气体排放的影响
  • DOI:
    10.1007/s40825-019-00122-5
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Melanie Moses;Scott J. Curran;S. Lewis;R. Connatser;J. Storey
  • 通讯作者:
    J. Storey
Exploring the potential benefits of high-efficiency dual-fuel combustion on a heavy-duty multi-cylinder engine for SuperTruck I
探索 SuperTruck I 重型多缸发动机高效双燃料燃烧的潜在优势
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    C. Lerin;K. Edwards;Scott J. Curran;Eric J. Nafziger;Melanie Moses;B. Kaul;S. Singh;M. Allain;Jeff Girbach
  • 通讯作者:
    Jeff Girbach

Melanie Moses的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melanie Moses', 18)}}的其他基金

Collaborative Research: RAPID: Spatial Modeling of Immune Response to Multifocal SARS-CoV-2 Viral Lung Infection
合作研究:RAPID:多灶性 SARS-CoV-2 病毒肺部感染免疫反应的空间建模
  • 批准号:
    2030037
  • 财政年份:
    2020
  • 资助金额:
    $ 149.54万
  • 项目类别:
    Standard Grant
CS 10K: New Mexico Computer Science for All (NM CSforAll)
CS 10K:新墨西哥州全民计算机科学 (NM CSforAll)
  • 批准号:
    1240992
  • 财政年份:
    2012
  • 资助金额:
    $ 149.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Search, Signals and Information Exchange in Distributed Biological Systems
协作研究:分布式生物系统中的搜索、信号和信息交换
  • 批准号:
    1038682
  • 财政年份:
    2010
  • 资助金额:
    $ 149.54万
  • 项目类别:
    Standard Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10573225
  • 财政年份:
    2021
  • 资助金额:
    $ 149.54万
  • 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10392429
  • 财政年份:
    2021
  • 资助金额:
    $ 149.54万
  • 项目类别:
NRI: INT: MiaPURE (Modular, Interactive and Adaptive Personalized Unique Rolling Experience)
NRI:INT:MiaPURE(模块化、交互式和自适应个性化独特滚动体验)
  • 批准号:
    2024905
  • 财政年份:
    2020
  • 资助金额:
    $ 149.54万
  • 项目类别:
    Standard Grant
SCH: INT: An Adaptive Robotic Hand Orthosis with Multimodal Sensing and Continuous Learning
SCH:INT:具有多模态传感和持续学习功能的自适应机器人手矫形器
  • 批准号:
    10222795
  • 财政年份:
    2019
  • 资助金额:
    $ 149.54万
  • 项目类别:
SCH: INT: An Adaptive Robotic Hand Orthosis with Multimodal Sensing and Continuous Learning
SCH:INT:具有多模态传感和持续学习功能的自适应机器人手矫形器
  • 批准号:
    10023203
  • 财政年份:
    2019
  • 资助金额:
    $ 149.54万
  • 项目类别:
SCH: INT: An Adaptive Robotic Hand Orthosis with Multimodal Sensing and Continuous Learning
SCH:INT:具有多模态传感和持续学习功能的自适应机器人手矫形器
  • 批准号:
    9929143
  • 财政年份:
    2019
  • 资助金额:
    $ 149.54万
  • 项目类别:
SCH: INT: An Adaptive Robotic Hand Orthosis with Multimodal Sensing and Continuous Learning
SCH:INT:具有多模态传感和持续学习功能的自适应机器人手矫形器
  • 批准号:
    10455499
  • 财政年份:
    2019
  • 资助金额:
    $ 149.54万
  • 项目类别:
SCH: INT: Adaptive Partnership for the Robotic Treatment of Autism
SCH:INT:自闭症机器人治疗的适应性合作伙伴关系
  • 批准号:
    1838808
  • 财政年份:
    2019
  • 资助金额:
    $ 149.54万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Integrated Modeling and Learning for Robust Grasping and Dexterous Manipulation with Adaptive Hands
NRI:INT:COLLAB:利用自适应手实现稳健抓取和灵巧操作的集成建模和学习
  • 批准号:
    1734190
  • 财政年份:
    2017
  • 资助金额:
    $ 149.54万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Integrated Modeling and Learning for Robust Grasping and Dexterous Manipulation with Adaptive Hands
NRI:INT:COLLAB:利用自适应手实现稳健抓取和灵巧操作的集成建模和学习
  • 批准号:
    1734492
  • 财政年份:
    2017
  • 资助金额:
    $ 149.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了