A Robust and Reliable Resource for Accessing, Sharing, and Analyzing Confidential Geospatial Research Data
用于访问、共享和分析机密地理空间研究数据的强大而可靠的资源
基本信息
- 批准号:2025783
- 负责人:
- 金额:$ 30.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will undertake a set of interrelated research activities to enhance a robust and reliable geospatial virtual data enclave (GVDE) that will facilitate the sharing of geospatial research data while also maintaining the confidentiality of individuals whose identities may be at risk because of the distinctive characteristics of geospatial data. This collaborative project between the American Association of Geographers (AAG), the University of Illinois at Urbana-Champaign, and the University of Michigan's Inter-university Consortium for Political and Social Research (ICPSR) will enhance an infrastructural resource that will advance scientific research by building capacity for data sharing in geospatial data-intensive research communities in the social, environmental, and related sciences that use geospatial data. The GVDE resource will make a wide range of geospatial, spatial statistical, and geographic information system software available to allow researchers to share, access, build on, and conduct new research involving confidential data within the enclave. It will be a secure research environment for sharing confidential geospatial research data, thereby enabling the replication of prior research involving confidential geospatial data. The GVDE will create new research infrastructure for scientists to share data so that research results are replicable and national investments in data creation are preserved for subsequent analysis. The project will train researchers in techniques to protect confidentiality in geospatial data. Graduate students will be involved in the enhancement of this infrastructure.The ability to replicate and reproduce research is a corner-stone of scientific methodology. The generation and analysis of geospatial and locational data is at the frontier of many scientific domains, yet the unique characteristics of these data present special challenges to data-sharing practices due to the need to protect the locational privacy and confidentiality of research subjects. The privacy challenges of confidential geospatial data are not yet fully understood by many members of the scientific research community. As a result, research is often impeded by uncertainty regarding geospatial data confidentiality or by a lack of effective methods for safely sharing and accessing confidential geospatial research data for analysis or replication. To address these problems, the investigators will enhance the GVDE and its core capabilities to share, access, analyze, and replicate geospatial data. They will evaluate and implement confidentiality protection techniques to enable researchers to anonymize and export maps, analyses, and visualizations derived from analyses conducted in the GVDE. They will develop and implement a researcher credentialing system to provide trained and trusted researchers with a durable digital identifier to safely access and use the GVDE. They will also ensure the long-term sustainability of the GVDE system and expand its availability to the broader geospatial research community through outreach, dissemination, and the development of training materials on system use, data confidentiality ethics, credentialing requirements, research replication, and best practices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开展一系列相互关联的研究活动,以加强一个强大和可靠的地理空间虚拟数据飞地,这将促进地理空间研究数据的共享,同时也为由于地理空间数据的独特性而身份可能面临风险的个人保密。 美国地理学家协会(AAG),伊利诺伊大学厄巴纳-香槟分校和密歇根大学政治和社会研究校际联盟(ICPSR)之间的这一合作项目将加强基础设施资源,通过在社会,环境,以及使用地理空间数据的相关科学。 GVDE资源将提供广泛的地理空间,空间统计和地理信息系统软件,使研究人员能够共享,访问,建立和进行涉及飞地内机密数据的新研究。 这将是一个安全的研究环境,可用于共享机密地理空间研究数据,从而能够复制以前涉及机密地理空间数据的研究。 GVDE将为科学家共享数据创建新的研究基础设施,以便研究成果可复制,并将国家在数据创建方面的投资保留下来供后续分析。 该项目将培训研究人员掌握保护地理空间数据机密性的技术。 研究生将参与加强这一基础设施。复制和再生产研究的能力是科学方法的基石。 地理空间和位置数据的生成和分析处于许多科学领域的前沿,但由于需要保护研究对象的位置隐私和机密性,这些数据的独特性对数据共享做法提出了特殊挑战。 科学研究界的许多成员尚未充分了解机密地理空间数据的隐私挑战。 因此,研究工作往往因地理空间数据保密性的不确定性或因缺乏安全共享和获取机密地理空间研究数据以供分析或复制的有效方法而受到阻碍。 为了解决这些问题,调查人员将增强GVDE及其共享、访问、分析和复制地理空间数据的核心能力。 他们将评估和实施保密保护技术,使研究人员能够匿名和导出GVDE中进行的分析得出的地图,分析和可视化。 他们将开发和实施一个研究人员认证系统,为训练有素和值得信赖的研究人员提供一个持久的数字标识符,以安全地访问和使用GVDE。 他们还将确保全球地理信息数据交换系统的长期可持续性,并通过外联、传播和编写关于系统使用、数据保密道德、认证要求、研究复制、该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识产权进行评估来支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An exploratory assessment of the effectiveness of geomasking methods on privacy protection and analytical accuracy for individual-level geospatial data
探索性评估地理屏蔽方法对个人级地理空间数据隐私保护和分析准确性的有效性
- DOI:10.1080/15230406.2022.2056510
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Wang, Jue;Kim, Junghwan;Kwan, Mei-Po
- 通讯作者:Kwan, Mei-Po
Daily activity locations k-anonymity for the evaluation of disclosure risk of individual GPS datasets
- DOI:10.1186/s12942-020-00201-9
- 发表时间:2020-03-05
- 期刊:
- 影响因子:4.9
- 作者:Wang, Jue;Kwan, Mei-Po
- 通讯作者:Kwan, Mei-Po
How do people perceive the disclosure risk of maps? Examining the perceived disclosure risk of maps and its implications for geoprivacy protection
- DOI:10.1080/15230406.2020.1794976
- 发表时间:2020-08-25
- 期刊:
- 影响因子:2.5
- 作者:Kim, Junghwan;Kwan, Mei-Po;Richardson, Douglas B.
- 通讯作者:Richardson, Douglas B.
Travel time errors caused by geomasking might be different between transportation modes and types of urban area
- DOI:10.1111/tgis.12751
- 发表时间:2021-05
- 期刊:
- 影响因子:2.4
- 作者:Junghwan Kim;Mei‐Po Kwan
- 通讯作者:Junghwan Kim;Mei‐Po Kwan
Ethical Research in the Age of COVID-19: A Participatory Forum
COVID-19 时代的伦理研究:参与式论坛
- DOI:10.14433/2017.0081
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Dony, Coline
- 通讯作者:Dony, Coline
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Richardson其他文献
人殺し?動物殺し?魚殺し?ある種の倒錯の表明
凶手?
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Douglas Richardson;Noel Castree;Mike M. Goodchild; Audrey Kobayashi;Weidong Liu,Richard Marston;Noriko Ishiyama;菅豊;赤堀雅幸;森 正人;竹川大介 - 通讯作者:
竹川大介
Can preterm deliveries be prevented?
可以预防早产吗?
- DOI:
- 发表时间:
1985 - 期刊:
- 影响因子:9.8
- 作者:
Denise M. Main;S. Gabbe;Douglas Richardson;Sharon Strong - 通讯作者:
Sharon Strong
民俗学における多様なエスノグラフィーへの挑戦
民俗研究中多样化民族志面临的挑战
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Douglas Richardson;Noel Castree;Mike M. Goodchild; Audrey Kobayashi;Weidong Liu,Richard Marston;Noriko Ishiyama;菅豊 - 通讯作者:
菅豊
Proliferation of NICUs and Neonatologists, 1980-1995 1328
新生儿重症监护病房和新生儿科医生的扩散,1980-1995 年 1328
- DOI:
10.1203/00006450-199804001-01349 - 发表时间:
1998-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Douglas Richardson;Embry Howell;Mark Legnini;Paul Ginsberg - 通讯作者:
Paul Ginsberg
イスラームにおける信仰と儀礼と共同体
伊斯兰教的信仰、仪式和社区
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Douglas Richardson;Noel Castree;Mike M. Goodchild; Audrey Kobayashi;Weidong Liu,Richard Marston;Noriko Ishiyama;菅豊;赤堀雅幸 - 通讯作者:
赤堀雅幸
Douglas Richardson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas Richardson', 18)}}的其他基金
A Robust and Reliable Resource for Accessing, Sharing, and Analyzing Confidential Geospatial Research Data
用于访问、共享和分析机密地理空间研究数据的强大而可靠的资源
- 批准号:
1832465 - 财政年份:2018
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
BCC-SBE: Addressing Challenges for Geospatial Data-Intensive Research Communities: Research on Unique Confidentiality Risks & Geospatial Data Sharing within a Virtual Data Encl
BCC-SBE:应对地理空间数据密集型研究社区的挑战:独特保密风险的研究
- 批准号:
1244691 - 财政年份:2012
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
Engaging United States Scholars in International Geographic Research and Scientific Leadership: Support for Participation in International Geographical Union Events, 2012-2016
让美国学者参与国际地理研究和科学领导:支持参加国际地理联盟活动,2012-2016
- 批准号:
1122738 - 财政年份:2011
- 资助金额:
$ 30.86万 - 项目类别:
Continuing Grant
Enhancing U.S. Scientific Leadership and Geographic Research: International Collaboration in the Middle East
加强美国的科学领导力和地理研究:中东的国际合作
- 批准号:
0719623 - 财政年份:2008
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
Enhancing United States Scientific Leadership and Geographical Research
加强美国的科学领导力和地理研究
- 批准号:
0351341 - 财政年份:2004
- 资助金额:
$ 30.86万 - 项目类别:
Continuing Grant
SGER: The Geographical Dimensions of Terrorism: A Research Agenda for the Discipline
SGER:恐怖主义的地理维度:该学科的研究议程
- 批准号:
0200619 - 财政年份:2001
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
相似海外基金
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
- 批准号:
BB/X01858X/1 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Research Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
- 批准号:
2310323 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
- 批准号:
2336356 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
- 批准号:
EP/Y015886/1 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Research Grant
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Speedy and Reliable Approximate Queries in Hybrid Transactional/Analytical Systems
职业:混合事务/分析系统中快速可靠的近似查询
- 批准号:
2339596 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Continuing Grant