RAPID: COVID-19 Response Support: Building Synthetic Multi-scale Networks
RAPID:COVID-19 响应支持:构建综合多尺度网络
基本信息
- 批准号:2027541
- 负责人:
- 金额:$ 17.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Novel 2019 Coronavirus (COVID-19) has already caused unprecedented global social, economic, and health impact. This project will develop synthetic global multi-scale social contact networks. The synthetic but realistic social contact networks can capture human interactions either at an individual or community level. The networks can be used in conjunction with agent-based models to simulate the ongoing COVID-19 pandemic. The simulations can in-turn be used to design and assess various interventions that balance health benefits with social and economic costs. Data will be made available to the scientific community. The PIs will also work with other research groups and continue their partnership with other federal and state agencies to support their response efforts. Developing synthetic social contact networks is a statistically and algorithmically challenging problem. This project will synthesize ensembles of two classes of synthetic social contact networks -- patch-based meta-population networks and individualized synthetic social contact populations and networks using a combination of machine learning and data driven modeling techniques. The need for such data driven mechanistic modeling methods has become abundantly clear in regimes when the available data is sparse and noisy. The project will undertake a detailed statistical analysis of the algorithms and the synthetic networks they produce. This includes methods to conduct global sensitivity analysis and methods to quantify the uncertainty in the outcomes as a function of the network structure. One of the many uses of this resource, is to support individual-based as well as meta-population-based simulation models for epidemic spread in general, and COVID-19 in particular. Beyond supporting ongoing COVID-19 outbreaks, these synthetic social contact networks will be useful in responding to other epidemics. The PIs plan to make this data available to the global research community so that researchers around the world can immediately use it to assess the pandemic and the response efforts in their respective regions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2019年新型冠状病毒(COVID-19)已经造成了前所未有的全球社会、经济和健康影响。该项目将开发合成的全球多尺度社会联系网络。合成但现实的社会联系网络可以捕捉个人或社区层面的人类互动。这些网络可与基于主体的模型结合使用,以模拟正在进行的COVID-19大流行。模拟可以反过来用于设计和评估各种干预措施,以平衡健康效益与社会和经济成本。数据将提供给科学界。ppi还将与其他研究小组合作,并继续与其他联邦和州机构合作,以支持他们的应对工作。开发合成的社会联系网络是一个具有统计学和算法挑战性的问题。该项目将结合机器学习和数据驱动建模技术,综合两类合成社会联系网络——基于补丁的元群体网络和个性化合成社会联系群体和网络。在可用数据稀疏且有噪声的情况下,对这种数据驱动的机制建模方法的需求已经变得非常明显。该项目将对算法及其生成的合成网络进行详细的统计分析。这包括进行全局敏感性分析的方法,以及将结果中的不确定性作为网络结构的函数进行量化的方法。该资源的众多用途之一是支持基于个人和基于元人群的流行病传播模拟模型,特别是COVID-19。除了支持当前的COVID-19疫情外,这些合成的社会联系网络将有助于应对其他流行病。计划向全球研究界提供这些数据,以便世界各地的研究人员可以立即使用这些数据来评估大流行和各自地区的应对工作。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High resolution proximity statistics as early warning for US universities reopening during COVID-19
高分辨率邻近统计数据作为美国大学在 COVID-19 期间重新开放的预警
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Mehrab, Z;Ranga, AG;Sarkar, D;Venkatramanan, S;Baek, Y;Swarup, S;Marathe, M
- 通讯作者:Marathe, M
Using Active Queries to Infer Symmetric Node Functions of Graph Dynamical Systems
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Abhijin Adiga;C. Kuhlman;M. Marathe;Sujith Ravi;D. Rosenkrantz;R. Stearns
- 通讯作者:Abhijin Adiga;C. Kuhlman;M. Marathe;Sujith Ravi;D. Rosenkrantz;R. Stearns
Cohorting to isolate asymptomatic spreaders: An agent-based simulation study on the Mumbai Suburban Railway
- DOI:10.5555/3463952.3464199
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:A. Talekar;S. Shriram;N. Vaidhiyan;G. Aggarwal;Jiangzhuo Chen;S. Venkatramanan;Lijing Wang;A. Adiga;A. Sadilek;A. Tendulkar;M. Marathe;R. Sundaresan;M. Tambe
- 通讯作者:A. Talekar;S. Shriram;N. Vaidhiyan;G. Aggarwal;Jiangzhuo Chen;S. Venkatramanan;Lijing Wang;A. Adiga;A. Sadilek;A. Tendulkar;M. Marathe;R. Sundaresan;M. Tambe
Phase-Informed Bayesian Ensemble Models Improve Performance of COVID-19 Forecasts
阶段信息贝叶斯集成模型提高了 COVID-19 预测的性能
- DOI:10.1609/aaai.v37i13.26855
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Adiga, Aniruddha;Kaur, Gursharn;Wang, Lijing;Hurt, Benjamin;Porebski, Przemyslaw;Venkatramanan, Srinivasan;Lewis, Bryan;Marathe, Madhav V.
- 通讯作者:Marathe, Madhav V.
Data-Driven Real-Time Strategic Placement of Mobile Vaccine Distribution Sites
- DOI:10.1101/2021.12.15.21267736
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Z. Mehrab;M. Wilson;S. Chang;G. Harrison;B. Lewis;A. Telionis;J. Crow;D. Kim;S. Spillmann;K. Peters;J. Leskovec;M. Marathe
- 通讯作者:Z. Mehrab;M. Wilson;S. Chang;G. Harrison;B. Lewis;A. Telionis;J. Crow;D. Kim;S. Spillmann;K. Peters;J. Leskovec;M. Marathe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Madhav Marathe其他文献
Madhav Marathe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Madhav Marathe', 18)}}的其他基金
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
- 批准号:
2327710 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
RAPID: Modeling and Analytics for COVID-19 Outbreak Response in India: A multi-institutional, US-India joint collaborative effort
RAPID:印度 COVID-19 疫情应对的建模和分析:美印多机构联合协作
- 批准号:
2142997 - 财政年份:2021
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918656 - 财政年份:2020
- 资助金额:
$ 17.36万 - 项目类别:
Continuing Grant
RAPID: Collaborative: Transfer Learning Techniques for Better Response to COVID-19 in the US
RAPID:协作:迁移学习技术以更好地应对美国的 COVID-19
- 批准号:
2028004 - 财政年份:2020
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Virtual Organization for Computing Research in Pandemic Preparedness and Resilience
流行病防范和恢复力计算研究虚拟组织
- 批准号:
2041952 - 财政年份:2020
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
- 批准号:
1927791 - 财政年份:2019
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Software: CINES: A Scalable Cyberinfrastructure for Sustained Innovation in Network Engineering and Science
合作研究:框架:软件:CINES:用于网络工程和科学持续创新的可扩展网络基础设施
- 批准号:
1835660 - 财政年份:2018
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Software: CINES: A Scalable Cyberinfrastructure for Sustained Innovation in Network Engineering and Science
合作研究:框架:软件:CINES:用于网络工程和科学持续创新的可扩展网络基础设施
- 批准号:
1916805 - 财政年份:2018
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
- 批准号:
1745207 - 财政年份:2017
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
NetSE: Large: Collaborative Research: Contagion in large socio-communication networks
NetSE:大型:协作研究:大型社会通信网络中的传染
- 批准号:
1011769 - 财政年份:2010
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
相似国自然基金
CEACAM5调控Galectin-9介导的CD4+T细胞极化在COVID-19肠屏障损伤的作用机制研究
- 批准号:82370569
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
COVID-19疫情对我国儿童生长发育影响的异质性研究
- 批准号:42371429
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
传染病模型的稳态切换过程研究及其在治疗COVID-19中的应用
- 批准号:LQ23A010016
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
“湿漫膜原”视角下研究加味达原饮重塑COVID-19“免疫炎症稳态”的分子机制:TLR4介导IRF3/NF-κB通路串扰
- 批准号:82374291
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
COVID-19中线粒体囊泡抑制CD8+T细胞记忆分化的机制研究
- 批准号:82300018
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
COVID-19疫情爆发后武汉地区儿童副流感病毒3型的流行趋势和进化规律研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 GDF15-IL6 信号轴探究扶正解毒方逆转血管内皮衰老治疗COVID-19的作用与机制
- 批准号:82374392
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多维不平稳和长记忆性的复杂整值时间序列的建模及其在Covid-19研究中的应用
- 批准号:12301358
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
COVID-19疫苗同源、异源加强剂次细胞免疫与体液免疫效应的前瞻性队列研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于人源细胞3D培养和精密肺切片技术探讨慢阻肺患者COVID-19易感机制研究
- 批准号:LY23H190003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Rapid learning during a public health emergency: COVID-19 related medication treatment patterns in Medicare
突发公共卫生事件期间的快速学习:医疗保险中与 COVID-19 相关的药物治疗模式
- 批准号:
10711497 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Quantitative Detection of Coronary Microvascular Dysfunction in Long COVID Patients using a Comprehensive, Rapid, Free-Breathing Cardiovascular MRI
使用全面、快速、自由呼吸的心血管 MRI 定量检测长期新冠肺炎患者的冠状动脉微血管功能障碍
- 批准号:
10671235 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Rapid diagnosis of COVID-19 and fungal infections using Raman barcodes
使用拉曼条形码快速诊断 COVID-19 和真菌感染
- 批准号:
23K09359 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RAPID: Retrospective COVID-19 Scenario Projections Accounting for Population Heterogeneities
RAPID:考虑人口异质性的回顾性 COVID-19 情景预测
- 批准号:
2333494 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
SBIR PA22-176 - RNA aptamers for rapid response to COVID-19 variants
SBIR PA22-176 - 用于快速响应 COVID-19 变体的 RNA 适体
- 批准号:
10758405 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
FDA Vet-LIRN Capacity-Building of Ohio ADDL to support rapid testing for COVID-19
FDA Vet-LIRN 俄亥俄州 ADDL 能力建设支持快速检测 COVID-19
- 批准号:
10829119 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
RAPID: Collaborative Research: Providing useable COVID-19 health information to linguistically underserved people
RAPID:协作研究:为语言服务不足的人群提供可用的 COVID-19 健康信息
- 批准号:
2331607 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Market translation of a rapid aptamer-based COVID-19 saliva test
基于适配体的快速 COVID-19 唾液检测的市场转化
- 批准号:
571001-2022 - 财政年份:2022
- 资助金额:
$ 17.36万 - 项目类别:
Idea to Innovation
RAPID: STEM faculty support to address impacts from COVID-19 on Tribal Colleges and Universities Program institutions
RAPID:STEM 教职员工支持解决 COVID-19 对部落学院和大学项目机构的影响
- 批准号:
2213457 - 财政年份:2022
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant