RAPID: Collaborative: Transfer Learning Techniques for Better Response to COVID-19 in the US

RAPID:协作:迁移学习技术以更好地应对美国的 COVID-19

基本信息

  • 批准号:
    2028004
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

This project will use available data sets for COVID-19 in other countries, and in NYC, Virginia, and Maryland to build compartmental and metapopulation models to quantify the events that transpired there, and what interventions at various stages may have achieved. This will permit gaining control of future situations earlier. The epidemic models developed during this project will lead to innovations in computational epidemiology and enable approaches that mitigate the negative effects of COVID-19 on public health, society, and the economy.Based on publicly available data sets for COVID-19 in other countries, and in NYC, Virginia, and Maryland, the researchers propose to build compartmental and metapopulation models to quantify the events that transpired there, understand the impacts of interventions at various stages, and develop optimal strategies for containing the pandemic. The basic model will subdivide the population into classes according to age, gender, and infectious status; examine the impact of the quarantine that was imposed; and then consider additional strategies that could have been imposed, in particular to reduce contact rates. The project will apply and extend the approach of "transfer learning" to this problem. The research team is well positioned to conduct this research; they have a long history of experience tracking and modeling infectious disease spread (e.g., Ebola, SARS) and are already participating in the CDC forecasting challenge for COVID-19.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目将利用其他国家以及纽约市、弗吉尼亚州和马里兰州的现有COVID-19数据集,建立分区和人口模型,量化那里发生的事件,以及不同阶段的干预措施可能取得的成果。这将使你能够更早地控制未来的情况。本项目开发的流行病模型将引领计算流行病学的创新,并使减轻COVID-19对公共卫生、社会和经济的负面影响的方法成为可能。根据其他国家以及纽约市、弗吉尼亚州和马里兰州的COVID-19公开可用数据集,研究人员建议建立分区和元人口模型,以量化那里发生的事件,了解不同阶段干预措施的影响,并制定遏制大流行的最佳策略。基本模型将根据年龄、性别和感染状况将人口细分为不同的阶层;审查实施隔离的影响;然后考虑本可以采取的其他策略,特别是降低接触率的策略。该项目将应用并扩展“迁移学习”的方法来解决这个问题。研究团队有能力进行这项研究;他们在追踪和模拟传染病传播(例如埃博拉、SARS)方面有着悠久的经验,并且已经参与了疾病预防控制中心对COVID-19的预测挑战。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High resolution proximity statistics as early warning for US universities reopening during COVID-19
高分辨率邻近统计数据作为美国大学在 COVID-19 期间重新开放的预警
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mehrab, Z;Ranga, AG;Sarkar, D;Venkatramanan, S;Baek, Y;Swarup, S;Marathe, M
  • 通讯作者:
    Marathe, M
Using Active Queries to Infer Symmetric Node Functions of Graph Dynamical Systems
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abhijin Adiga;C. Kuhlman;M. Marathe;Sujith Ravi;D. Rosenkrantz;R. Stearns
  • 通讯作者:
    Abhijin Adiga;C. Kuhlman;M. Marathe;Sujith Ravi;D. Rosenkrantz;R. Stearns
Cohorting to isolate asymptomatic spreaders: An agent-based simulation study on the Mumbai Suburban Railway
  • DOI:
    10.5555/3463952.3464199
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Talekar;S. Shriram;N. Vaidhiyan;G. Aggarwal;Jiangzhuo Chen;S. Venkatramanan;Lijing Wang;A. Adiga;A. Sadilek;A. Tendulkar;M. Marathe;R. Sundaresan;M. Tambe
  • 通讯作者:
    A. Talekar;S. Shriram;N. Vaidhiyan;G. Aggarwal;Jiangzhuo Chen;S. Venkatramanan;Lijing Wang;A. Adiga;A. Sadilek;A. Tendulkar;M. Marathe;R. Sundaresan;M. Tambe
Asymptomatic individuals can increase the final epidemic size under adaptive human behavior.
  • DOI:
    10.1038/s41598-021-98999-2
  • 发表时间:
    2021-10-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Espinoza B;Marathe M;Swarup S;Thakur M
  • 通讯作者:
    Thakur M
Effective Social Network-Based Allocation of COVID-19 Vaccines
基于社交网络的有效 COVID-19 疫苗分配
  • DOI:
    10.1145/3534678.3542673
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen, Jiangzhuo;Hoops, Stefan;Marathe, Achla;Mortveit, Henning;Lewis, Bryan;Venkatramanan, Srinivasan;Haddadan, Arash;Bhattacharya, Parantapa;Adiga, Abhijin;Vullikanti, Anil
  • 通讯作者:
    Vullikanti, Anil
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Madhav Marathe其他文献

Madhav Marathe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Madhav Marathe', 18)}}的其他基金

Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
  • 批准号:
    2327710
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
RAPID: Modeling and Analytics for COVID-19 Outbreak Response in India: A multi-institutional, US-India joint collaborative effort
RAPID:印度 COVID-19 疫情应对的建模和分析:美印多机构联合协作
  • 批准号:
    2142997
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
  • 批准号:
    1918656
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
RAPID: COVID-19 Response Support: Building Synthetic Multi-scale Networks
RAPID:COVID-19 响应支持:构建综合多尺度网络
  • 批准号:
    2027541
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Virtual Organization for Computing Research in Pandemic Preparedness and Resilience
流行病防范和恢复力计算研究虚拟组织
  • 批准号:
    2041952
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
  • 批准号:
    1927791
  • 财政年份:
    2019
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Software: CINES: A Scalable Cyberinfrastructure for Sustained Innovation in Network Engineering and Science
合作研究:框架:软件:CINES:用于网络工程和科学持续创新的可扩展网络基础设施
  • 批准号:
    1835660
  • 财政年份:
    2018
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Software: CINES: A Scalable Cyberinfrastructure for Sustained Innovation in Network Engineering and Science
合作研究:框架:软件:CINES:用于网络工程和科学持续创新的可扩展网络基础设施
  • 批准号:
    1916805
  • 财政年份:
    2018
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
  • 批准号:
    1745207
  • 财政年份:
    2017
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
NetSE: Large: Collaborative Research: Contagion in large socio-communication networks
NetSE:大型:协作研究:大型社会通信网络中的传染
  • 批准号:
    1011769
  • 财政年份:
    2010
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant

相似海外基金

Establishing an Inter-institutional San Fernando Valley Collaborative to Improve STEM Transfer Student Support, Retention, and Graduation
建立圣费尔南多谷机构间合作,以改善 STEM 转学生的支持、保留和毕业
  • 批准号:
    2322433
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2232875
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219795
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2230593
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
  • 批准号:
    2246509
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327572
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了