RAPID: Collaborative: Transfer Learning Techniques for Better Response to COVID-19 in the US
RAPID:协作:迁移学习技术以更好地应对美国的 COVID-19
基本信息
- 批准号:2028004
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will use available data sets for COVID-19 in other countries, and in NYC, Virginia, and Maryland to build compartmental and metapopulation models to quantify the events that transpired there, and what interventions at various stages may have achieved. This will permit gaining control of future situations earlier. The epidemic models developed during this project will lead to innovations in computational epidemiology and enable approaches that mitigate the negative effects of COVID-19 on public health, society, and the economy.Based on publicly available data sets for COVID-19 in other countries, and in NYC, Virginia, and Maryland, the researchers propose to build compartmental and metapopulation models to quantify the events that transpired there, understand the impacts of interventions at various stages, and develop optimal strategies for containing the pandemic. The basic model will subdivide the population into classes according to age, gender, and infectious status; examine the impact of the quarantine that was imposed; and then consider additional strategies that could have been imposed, in particular to reduce contact rates. The project will apply and extend the approach of "transfer learning" to this problem. The research team is well positioned to conduct this research; they have a long history of experience tracking and modeling infectious disease spread (e.g., Ebola, SARS) and are already participating in the CDC forecasting challenge for COVID-19.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将在其他国家使用可用数据集,以及在纽约,弗吉尼亚州和马里兰州使用隔间和群体群体模型来量化那里发生的事件,以及在各个阶段进行哪些干预措施。这将允许更早地控制未来情况。 该项目期间开发的流行模型将导致计算流行病学的创新,并启用方法来减轻Covid-19对公共卫生,社会和经济的负面影响。基于其他国家的Covid-19的公共可用数据集,以及在纽约,弗吉尼亚州,弗吉尼亚州,纽约,尼西亚州和马里兰州的跨越型号的事件,以使其构建的模型能够实现构建模型,以了解该模型的构建模型。在各个阶段进行干预措施,并制定最佳策略以包含大流行。基本模型将根据年龄,性别和感染状态将人口分为阶级;检查所施加的隔离的影响;然后考虑可能采取的其他策略,特别是以降低接触率。 该项目将应用并将“转移学习”方法扩展到此问题。 研究团队在进行这项研究方面有好处。他们有悠久的经验跟踪和建模传染病传播的历史(例如埃博拉病毒,SARS),并且已经参与了COVID-COVID-12的CDC预测挑战。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prioritizing allocation of COVID-19 vaccines based on social contacts increases vaccination effectiveness
- DOI:10.1101/2021.02.04.21251012
- 发表时间:2021-02-16
- 期刊:
- 影响因子:0
- 作者:Chen, J.;Hoops, S.;Marathe, M.
- 通讯作者:Marathe, M.
Using Active Queries to Infer Symmetric Node Functions of Graph Dynamical Systems
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Abhijin Adiga;C. Kuhlman;M. Marathe;Sujith Ravi;D. Rosenkrantz;R. Stearns
- 通讯作者:Abhijin Adiga;C. Kuhlman;M. Marathe;Sujith Ravi;D. Rosenkrantz;R. Stearns
Cohorting to isolate asymptomatic spreaders: An agent-based simulation study on the Mumbai Suburban Railway
- DOI:10.5555/3463952.3464199
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:A. Talekar;S. Shriram;N. Vaidhiyan;G. Aggarwal;Jiangzhuo Chen;S. Venkatramanan;Lijing Wang;A. Adiga;A. Sadilek;A. Tendulkar;M. Marathe;R. Sundaresan;M. Tambe
- 通讯作者:A. Talekar;S. Shriram;N. Vaidhiyan;G. Aggarwal;Jiangzhuo Chen;S. Venkatramanan;Lijing Wang;A. Adiga;A. Sadilek;A. Tendulkar;M. Marathe;R. Sundaresan;M. Tambe
High resolution proximity statistics as early warning for US universities reopening during COVID-19
高分辨率邻近统计数据作为美国大学在 COVID-19 期间重新开放的预警
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Mehrab, Z;Ranga, AG;Sarkar, D;Venkatramanan, S;Baek, Y;Swarup, S;Marathe, M
- 通讯作者:Marathe, M
Effective Social Network-Based Allocation of COVID-19 Vaccines
基于社交网络的有效 COVID-19 疫苗分配
- DOI:10.1145/3534678.3542673
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chen, Jiangzhuo;Hoops, Stefan;Marathe, Achla;Mortveit, Henning;Lewis, Bryan;Venkatramanan, Srinivasan;Haddadan, Arash;Bhattacharya, Parantapa;Adiga, Abhijin;Vullikanti, Anil
- 通讯作者:Vullikanti, Anil
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Madhav Marathe其他文献
Madhav Marathe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Madhav Marathe', 18)}}的其他基金
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
- 批准号:
2327710 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
RAPID: Modeling and Analytics for COVID-19 Outbreak Response in India: A multi-institutional, US-India joint collaborative effort
RAPID:印度 COVID-19 疫情应对的建模和分析:美印多机构联合协作
- 批准号:
2142997 - 财政年份:2021
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
RAPID: COVID-19 Response Support: Building Synthetic Multi-scale Networks
RAPID:COVID-19 响应支持:构建综合多尺度网络
- 批准号:
2027541 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
- 批准号:
1918656 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Virtual Organization for Computing Research in Pandemic Preparedness and Resilience
流行病防范和恢复力计算研究虚拟组织
- 批准号:
2041952 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
- 批准号:
1927791 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Software: CINES: A Scalable Cyberinfrastructure for Sustained Innovation in Network Engineering and Science
合作研究:框架:软件:CINES:用于网络工程和科学持续创新的可扩展网络基础设施
- 批准号:
1835660 - 财政年份:2018
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Software: CINES: A Scalable Cyberinfrastructure for Sustained Innovation in Network Engineering and Science
合作研究:框架:软件:CINES:用于网络工程和科学持续创新的可扩展网络基础设施
- 批准号:
1916805 - 财政年份:2018
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
- 批准号:
1745207 - 财政年份:2017
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
NetSE: Large: Collaborative Research: Contagion in large socio-communication networks
NetSE:大型:协作研究:大型社会通信网络中的传染
- 批准号:
1011769 - 财政年份:2010
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
双单亲遗传贝类线粒体与核氧化磷酸化基因动态协作调控机制
- 批准号:32302965
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
降水变化下土壤动物协作效应对土壤有机质形成过程的影响
- 批准号:42307409
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
反硝化厌氧甲烷氧化菌群信号交流协作机制与调控策略
- 批准号:52300068
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
RAPID: Collaborative: Transfer Learning Techniques for Better Response to COVID-19 in the US
RAPID:协作:迁移学习技术以更好地应对美国的 COVID-19
- 批准号:
2027908 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
RAPID: Collaborative: Transfer Learning Techniques for Better Response to COVID-19 in the US
RAPID:协作:迁移学习技术以更好地应对美国的 COVID-19
- 批准号:
2027984 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: GeoGONAF - An observatory to study the active deformation and strain transfer along the Izmit Bay-Marmara Sea segment of the North Anatolian Fault
合作研究:RAPID:GeoGONAF - 研究北安纳托利亚断层伊兹米特湾-马尔马拉海段活动变形和应变传递的观测站
- 批准号:
1349851 - 财政年份:2013
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: GeoGONAF - An observatory to study the active deformation and strain transfer along the Izmit Bay-Marmara Sea segment of the North Anatolian Fault
合作研究:RAPID:GeoGONAF - 研究北安纳托利亚断层伊兹米特湾-马尔马拉海段活动变形和应变传递的观测站
- 批准号:
1349838 - 财政年份:2013
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Testing for Rapid Pulses of Crustal-scale Heat and Mass Transfer by Fluids in Metamorphic "Hot Spots", New Hampshire, USA
合作研究:测试美国新罕布什尔州变质“热点”中流体的地壳尺度传热传质快速脉冲
- 批准号:
0948102 - 财政年份:2010
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant