RAPID: Tracking Urban Mobility and Occupancy under Social Distancing Policy

RAPID:追踪社交距离政策下的城市流动性和入住率

基本信息

  • 批准号:
    2028009
  • 负责人:
  • 金额:
    $ 4.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2020-10-31
  • 项目状态:
    已结题

项目摘要

This project promotes the progress of science and public health by using information technology to collect information about how people move through cities and use public spaces when they are supposed to be social distancing. Social distancing policy is intended to slow the spread of infectious diseases such as COVID-19. The effectiveness of social distancing in preventing disease depends on whether and how people follow these orders. By collecting video of city sidewalks and public spaces, we can understand how people are interpreting and responding to social distance orders, and, later, we can show how these behaviors affect health outcomes neighborhood by neighborhood. As the coronavirus spreads to other locales, evidence about how specific behaviors correlate with disease spread will encourage public compliance. For example, it is believed that it is safe to exercise outdoors, as long as people are not running too close with one another. Running and hiking are permitted; however, using parks to play pickup games of basketball is not. The data collected in this project will aid in establishing clearer, evidence-backed guidance for what safe and dangerous activities might be. The data will be also useful in future human robot interaction research. It will help autonomous systems, such as autonomous cars, delivery robots, and emergency service vehicles, to automatically recognize what people are doing, so that they can respond appropriately. This can be applied to a variety of purposes: It can help emergency response teams to quickly locate people that need help. It can help cars and robots to better understand different kinds of human activities, so that they might wait for momentary situations to pass, or steer around activities that will be longer in duration. This project will gather data on outdoor pedestrian and light vehicle (bicycle, scooter, skateboard) activity in New York from a) dashcam footage from vehicles driving through the city, b) video streams gathered from public web cameras, and c) mobile phone geo-location data volunteered by local citizens, to form a map of urban mobility and space occupancy under social distancing policy. This data will enable researchers to infer the activities, contexts, origins and destinations of the people in public spaces. This information can reveal where and, in turn, why stay at home orders are and are not being followed. It can also help to identify areas where essential services or activities are not distributed or designed optimally to decrease unnecessary interaction. This data can also be used in post-hoc analysis of policy directives and infection patterns, so as to better inform policy and social distancing design. It advances our understanding of how public policy translates to behaviors and activities on the ground, and how the emergence of individual behaviors and social interactions influence social health outcomes. This work demonstrates the application of current-day computer recognition and mobile technology to capture human behavior, will improve and validate models for infectious disease prevention, and also will inform public policy. In addition, it will augment the robotic community's ability to recognize human activities in urban spaces. By modelling social distancing behaviors, we can better design socially appropriate human robot interaction for public urban spaces in the future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过利用信息技术收集人们在城市中如何移动以及在应该保持社交距离时如何使用公共空间的信息,促进科学和公共卫生的进步。社交距离政策旨在减缓COVID-19等传染病的传播。社交距离在预防疾病方面的有效性取决于人们是否以及如何遵守这些命令。通过收集城市人行道和公共空间的视频,我们可以了解人们如何解释和回应社交距离命令,然后,我们可以逐个社区展示这些行为如何影响健康结果。随着冠状病毒传播到其他地方,关于特定行为与疾病传播之间关系的证据将鼓励公众遵守。例如,人们认为户外运动是安全的,只要人们彼此不跑得太近。跑步和徒步旅行是允许的;但是,使用公园打篮球的皮卡游戏是不允许的。该项目中收集的数据将有助于为哪些安全和危险活动建立更清晰、有证据支持的指导。这些数据也将有助于未来的人机交互研究。它将帮助自动驾驶系统,如自动汽车,送货机器人和紧急服务车辆,自动识别人们正在做什么,以便他们能够做出适当的反应。这可以应用于各种目的:它可以帮助应急响应团队快速找到需要帮助的人。它可以帮助汽车和机器人更好地理解不同类型的人类活动,以便它们可以等待短暂的情况过去,或者绕过持续时间较长的活动。该项目将收集关于纽约户外行人和轻型车辆(自行车、踏板车、滑板)活动的数据,这些数据来自:a)行驶在城市中的车辆的仪表盘摄像头镜头,B)从公共网络摄像头收集的视频流,以及c)当地公民自愿提供的移动的电话地理位置数据,以形成一张社交距离政策下的城市流动性和空间占用地图。这些数据将使研究人员能够推断公共空间中人们的活动,背景,起源和目的地。这些信息可以揭示在哪里以及为什么呆在家里的命令被遵守和没有被遵守。它还可以帮助确定哪些领域的基本服务或活动没有得到最佳分配或设计,以减少不必要的互动。这些数据还可用于政策指示和感染模式的事后分析,以便更好地为政策和社交距离设计提供信息。它促进了我们对公共政策如何转化为当地行为和活动的理解,以及个人行为和社会互动的出现如何影响社会健康结果。这项工作展示了当今计算机识别和移动的技术在捕捉人类行为方面的应用,将改进和验证传染病预防模型,并将为公共政策提供信息。此外,它还将增强机器人社区识别城市空间中人类活动的能力。通过模拟社交距离行为,我们可以更好地为未来的公共城市空间设计适合社交的人类机器人交互。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wendy Ju其他文献

Unintended Consonances: Methods to Understand Robot Motor Sound Perception
意想不到的协和:理解机器人电机声音感知的方法
The PUEVA Inventory: A Toolkit to Evaluate the Personality, Usability and Enjoyability of Voice Agents
PUEVA 库存:评估语音代理的个性、可用性和愉悦性的工具包
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stacey Li;S. Krome;Ilan Mandel;Marcel Walch;Wendy Ju
  • 通讯作者:
    Wendy Ju
Fake It to Make It: Exploratory Prototyping in HRI
假装成功:HRI 中的探索性原型设计
Animate Objects: How Physical Motion Encourages Public Interaction
使物体动起来:物理运动如何鼓励公众互动
Character Actor
性格演员

Wendy Ju的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wendy Ju', 18)}}的其他基金

Collaborative Research: FW-HTF-P: Using Technology to Transform Makers into Creative Entrepreneurs
合作研究:FW-HTF-P:利用技术将创客转变为创意企业家
  • 批准号:
    2222534
  • 财政年份:
    2022
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
NSF-BSF: HCC: Cultural Differences in Pedestrian-Autonomous Vehicle Interaction
NSF-BSF:HCC:行人与自动驾驶车辆交互中的文化差异
  • 批准号:
    2212431
  • 财政年份:
    2022
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
HCC: Medium: Cultural Differences in Driving Interaction
HCC:媒介:驾驶互动中的文化差异
  • 批准号:
    2107111
  • 财政年份:
    2021
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant

相似国自然基金

基于非结构化网格Front Tracking方法的复杂流动区域弹性界面液滴动力学研究
  • 批准号:
    52006188
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
面向矿区地表大形变的PSI/DInSAR与Offset-tracking深度融合方法研究
  • 批准号:
    51804297
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
非规则网格的front tracking 方法研究与程序实现
  • 批准号:
    11176015
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    联合基金项目
多流体ALE模式下Front tracking 界面追踪法研究
  • 批准号:
    10901022
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Tracking Urban Nitrous Acid (HONO) Emissions and Secondary Production in the Great Lakes Region during Michigan-Ontario Ozone Source Experiment (MOOSE)
密歇根-安大略臭氧源实验 (MOOSE) 期间追踪五大湖地区城市亚硝酸 (HONO) 排放和二次生产
  • 批准号:
    2126097
  • 财政年份:
    2021
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
Microbial Source Tracking in Urban Watersheds
城市流域微生物源追踪
  • 批准号:
    564536-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 4.97万
  • 项目类别:
    University Undergraduate Student Research Awards
Source Tracking and Prediction of Environmental Fate of Microplastics on Urban Water Cycle
微塑料对城市水循环的环境归宿追踪与预测
  • 批准号:
    19H00783
  • 财政年份:
    2019
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Event and real-time tracking of sediment transport in urban creeks
城市溪流泥沙输送事件及实时跟踪
  • 批准号:
    515431-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 4.97万
  • 项目类别:
    University Undergraduate Student Research Awards
Traffic Light Detection and Tracking for Urban Automated Driving
城市自动驾驶的交通灯检测和跟踪
  • 批准号:
    17K12713
  • 财政年份:
    2017
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Large-scale multi-target tracking problem to identify massive people flow in urban area
识别城市地区大量人流的大规模多目标跟踪问题
  • 批准号:
    15K12462
  • 财政年份:
    2015
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Sediment tracking in urban creeks
城市小溪中的沉积物跟踪
  • 批准号:
    465117-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 4.97万
  • 项目类别:
    University Undergraduate Student Research Awards
Tracking movements of urban amphibians
跟踪城市两栖动物的运动
  • 批准号:
    383044-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 4.97万
  • 项目类别:
    University Undergraduate Student Research Awards
Monitoring of fecal bacteria and microbial source tracking in coastal urban area
沿海城市粪便细菌监测及微生物来源追踪
  • 批准号:
    19510089
  • 财政年份:
    2007
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the methods for tracking and behavior understanding of vehicles and pedestrians in urban traffic scenes
城市交通场景中车辆和行人的跟踪和行为理解方法的开发
  • 批准号:
    14580407
  • 财政年份:
    2002
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了