RAPID: Superhydrophobic and Photocatalytic Antimicrobial (SPA) Coatings
RAPID:超疏水和光催化抗菌 (SPA) 涂层
基本信息
- 批准号:2028535
- 负责人:
- 金额:$ 19.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The COVID-19 pandemic has resulted in drastic socioeconomic, educational, political and cultural impacts worldwide. Despite the measures currently undertaken, the latest projections of COVID-19 death toll range upwards of 100,000 across the U.S. The World Health Organization considers the main route of COVID-19 transmission to be through contact with surfaces that have been contaminated with small respiratory droplets that are released when COVID-19 patients cough or exhale. The virus that causes COVID-19 (SARS-CoV-2) retains infectivity on stainless steel surfaces for up to 72 hours, and the current absence of a vaccine and effective antiviral drugs makes it critical to explore novel approaches to breaking the chain of viral transmission. The project focuses on design and initial laboratory and field testing of a spray coating technology that can be applied to a variety of surfaces to both repel virus-laden droplets and photocatalytically deactivate viral pathogens that lodge on coated surfaces. More broadly, the project supports graduate and undergraduate training in the areas of surface coating technology and catalysis, and also engages local hospitals and university medical research facilities in assessing the efficacy of the coating technologies for combating a broad range of airborne pathogens.Specifically, the research investigates the pathogen inhibiting efficacy of superhydrophobic and photocatalytic antimicrobial (SPA) coatings, a group of sprayable materials which, through their combined modes of action, can confer self-disinfecting properties to a wide array of surfaces, such as metals, concrete, ceramics, glass, and wood, to help prevent the transmission of viral, bacterial, and other pathogens for a prolonged duration of time, ranging from several months to several years. The SPA coatings represent a novel two-pronged approach to repelling and deactivating viral pathogens. The coatings consist of nano-TiO2 and ZnO siloxane-modified superhydrophobic layers that serve to repel respiratory droplets, thus minimizing the ability of pathogens to linger on surfaces, while also facilitating cleaning procedures. The superhydrophobic layers are intermixed with TiO2, ZnO, and Ti-phosphate layers that impart photocatalytic activity. The photocatalytic material has potential to deactivate any pathogens that remain on the surface through the release of hydroxyl radicals. Doping of the materials with cuprous compounds further enhances the antimicrobial effect. Efficacy against the COVID-19 virus is the primary justification for the urgency of the research, which will proceed in parallel via both lab and field testing. Beyond the immediate impact on the current pandemic, the resulting technology will improve our nation’s preparedness for future waves of the same virus or other airborne pathogens. In addition, data obtained during the current pandemic will provide a fast track to scale-up, manufacturing and widespread deployment of the anti-viral coatings.This award is being funded by the CARES Act supplemental funds allocated to ENG and MPS.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2019冠状病毒病大流行在全球范围内造成了巨大的社会经济、教育、政治和文化影响。尽管目前采取了相关措施,但据最新预测,美国新冠肺炎死亡人数将超过10万人。世界卫生组织认为,新冠肺炎的主要传播途径是接触被患者咳嗽或呼气时释放的小飞沫污染的表面。导致COVID-19的病毒(SARS-CoV-2)在不锈钢表面上可保持长达72小时的传染性,目前缺乏疫苗和有效的抗病毒药物,因此探索打破病毒传播链的新方法至关重要。该项目的重点是设计、初步实验室和现场测试一种喷涂技术,该技术可以应用于各种表面,既可以击退携带病毒的液滴,又可以光催化灭活附着在涂层表面的病毒病原体。更广泛地说,该项目支持表面涂层技术和催化领域的研究生和本科生培训,并使当地医院和大学医学研究机构参与评估涂层技术在防治各种空气传播病原体方面的功效。具体来说,该研究调查了超疏水和光催化抗菌(SPA)涂层的病原体抑制效果,这是一组可喷涂材料,通过它们的组合作用模式,可以赋予各种表面(如金属、混凝土、陶瓷、玻璃和木材)自消毒特性,以帮助防止病毒、细菌和其他病原体的传播,持续时间从几个月到几年。SPA涂层代表了一种新的双管齐下的方法来排斥和灭活病毒病原体。该涂层由纳米tio2和氧化锌硅氧烷修饰的超疏水层组成,用于排斥呼吸道飞沫,从而最大限度地减少病原体在表面停留的能力,同时也便于清洁程序。超疏水层与TiO2、ZnO和ti -磷酸层混合,具有光催化活性。光催化材料有可能通过释放羟基自由基使任何残留在表面的病原体失活。铜化合物的掺杂进一步增强了材料的抗菌效果。对COVID-19病毒的有效性是研究紧迫性的主要理由,研究将通过实验室和现场测试并行进行。除了对当前大流行的直接影响外,由此产生的技术将提高我国对未来同一病毒或其他空气传播病原体浪潮的防范能力。此外,在当前大流行期间获得的数据将为扩大、制造和广泛部署抗病毒涂层提供快速通道。该奖项由分配给ENG和MPS的CARES法案补充资金资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthesis of ZnO/TiO2-Based Hydrophobic Antimicrobial Coatings for Steel and Their Roughness, Wetting, and Tribological Characterization
- DOI:10.1115/1.4053777
- 发表时间:2022-08-01
- 期刊:
- 影响因子:2.5
- 作者:Hasan, Md Syam;Zemajtis, Filip;Sobolev, Konstantin
- 通讯作者:Sobolev, Konstantin
Evaporation of droplets capable of bearing viruses airborne and on hydrophobic surfaces
- DOI:10.1063/5.0023501
- 发表时间:2021-01-14
- 期刊:
- 影响因子:3.2
- 作者:Hasan, Md Syam;Sobolev, Konstantin;Nosonovsky, Michael
- 通讯作者:Nosonovsky, Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantin Sobolev其他文献
The investigation of fly ash based asphalt binders using atomic force microscope
- DOI:
10.1007/s11709-017-0437-3 - 发表时间:
2017-07-04 - 期刊:
- 影响因子:3.100
- 作者:
Rajan Saha;Kyle Malloy;Emil Bautista;Konstantin Sobolev - 通讯作者:
Konstantin Sobolev
Fabrication of bulk hydrophobic cement-based materials with ultra-high impermeability
超高抗渗散装疏水性水泥基材料的制备
- DOI:
10.1016/j.jobe.2022.105492 - 发表时间:
2022-11 - 期刊:
- 影响因子:6.4
- 作者:
Chen Liang;Piqi Zhao;Lu Liu;Shuo Wang;Shoude Wang;Konstantin Sobolev;Lingchao Lu - 通讯作者:
Lingchao Lu
Insights into the properties and chloride binding capacity of β-hemihydrate in the presence of slag powder and white calcium aluminate cement
深入了解矿渣粉和白铝酸钙水泥存在下 β-半水合物的特性和氯离子结合能力
- DOI:
10.1016/j.conbuildmat.2020.119798 - 发表时间:
2020 - 期刊:
- 影响因子:7.4
- 作者:
Haoxin Li;Hui Zhang;Piqi Zhao;Biqin Dong;Peiming Wang;Konstantin Sobolev;Xin Cheng - 通讯作者:
Xin Cheng
The fungistatic properties and potential application of by-product fly ash from fluidized bed combustion
- DOI:
10.1016/j.conbuildmat.2017.10.076 - 发表时间:
2018-01-20 - 期刊:
- 影响因子:
- 作者:
Július Strigáč;Nadežda Števulová;Jozef Mikušinec;Konstantin Sobolev - 通讯作者:
Konstantin Sobolev
Public perceptions of families affected by pediatric cancer and educational work in pediatric oncology.
公众对受儿科癌症影响的家庭和儿科肿瘤学教育工作的看法。
- DOI:
10.1038/s41390-024-03179-3 - 发表时间:
2024 - 期刊:
- 影响因子:3.6
- 作者:
A. Reshetnikov;Margarita Gevandova;N. Prisyazhnaya;Konstantin Sobolev;N. Vyatkina;Gleb Demyanov - 通讯作者:
Gleb Demyanov
Konstantin Sobolev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantin Sobolev', 18)}}的其他基金
IUCRC Phase I University of Wisconsin-Milwaukee: Center for Concrete Advancement Network (CAN), Lead Site
IUCRC 第一阶段威斯康星大学密尔沃基分校:混凝土进步网络中心 (CAN),主要站点
- 批准号:
2310861 - 财政年份:2024
- 资助金额:
$ 19.83万 - 项目类别:
Continuing Grant
IUCRC Planning Grant: University of Wisconsin-Milwaukee: Center for Concrete Advanced Network - CAN
IUCRC 规划拨款:威斯康星大学密尔沃基分校:混凝土高级网络中心 - CAN
- 批准号:
2113791 - 财政年份:2021
- 资助金额:
$ 19.83万 - 项目类别:
Standard Grant
I-Corps: High-Performance Concrete and Superhydrophobic Admixtures
I-Corps:高性能混凝土和超疏水外加剂
- 批准号:
1659229 - 财政年份:2016
- 资助金额:
$ 19.83万 - 项目类别:
Standard Grant
EAGER: Engineering of Ultra-High Performance Cement Based Materials Using Superhydrophobic Hybridization
EAGER:利用超疏水杂化的超高性能水泥基材料工程
- 批准号:
0937652 - 财政年份:2009
- 资助金额:
$ 19.83万 - 项目类别:
Standard Grant
相似海外基金
Unravelling the Mechanisms of Self-Cleaning on Superhydrophobic and Liquid-Infused Surfaces
揭示超疏水和液体注入表面的自清洁机制
- 批准号:
EP/X028410/1 - 财政年份:2023
- 资助金额:
$ 19.83万 - 项目类别:
Fellowship
Building a two-way communication system: Bio-orthogonal superhydrophobic nanoparticles for controlled stimulation and real-time sensing of neurotransmitters
构建双向通信系统:生物正交超疏水纳米颗粒用于神经递质的受控刺激和实时传感
- 批准号:
10473375 - 财政年份:2022
- 资助金额:
$ 19.83万 - 项目类别:
Development of new hybrid icephobic/superhydrophobic surfaces using encapsulated phase change materials
使用封装相变材料开发新型混合疏冰/超疏水表面
- 批准号:
RGPIN-2020-05118 - 财政年份:2022
- 资助金额:
$ 19.83万 - 项目类别:
Discovery Grants Program - Individual
Superhydrophobic thermally rearranged membranes for low-energy separation
用于低能量分离的超疏水热重排膜
- 批准号:
DE220100135 - 财政年份:2022
- 资助金额:
$ 19.83万 - 项目类别:
Discovery Early Career Researcher Award
Superhydrophobic and icephobic materials for biomedical engineering applications
用于生物医学工程应用的超疏水和疏冰材料
- 批准号:
580586-2022 - 财政年份:2022
- 资助金额:
$ 19.83万 - 项目类别:
Alliance Grants
CBET-EPSRC: Surfactant impact on drag reduction of superhydrophobic surfaces in turbulent flows
CBET-EPSRC:表面活性剂对湍流中超疏水表面减阻的影响
- 批准号:
2054894 - 财政年份:2021
- 资助金额:
$ 19.83万 - 项目类别:
Standard Grant
CBET-EPSRC: Surfactant impact on drag reduction of superhydrophobic surfaces in turbulent flows
CBET-EPSRC:表面活性剂对湍流中超疏水表面减阻的影响
- 批准号:
EP/T030739/1 - 财政年份:2021
- 资助金额:
$ 19.83万 - 项目类别:
Research Grant
Development of new hybrid icephobic/superhydrophobic surfaces using encapsulated phase change materials
使用封装相变材料开发新型混合疏冰/超疏水表面
- 批准号:
RGPIN-2020-05118 - 财政年份:2021
- 资助金额:
$ 19.83万 - 项目类别:
Discovery Grants Program - Individual
Development of energy harvesting method under water using superhydrophobic surface
利用超疏水表面开发水下能量收集方法
- 批准号:
21K04732 - 财政年份:2021
- 资助金额:
$ 19.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Droplet-Based Analytical Chemistry Platforms Using Superhydrophobic and Superamphiphobic Surfaces
使用超疏水和超双疏表面的基于液滴的分析化学平台
- 批准号:
RGPIN-2016-04790 - 财政年份:2021
- 资助金额:
$ 19.83万 - 项目类别:
Discovery Grants Program - Individual