PPoSS: Planning: Eliminating the Bottlenecks to ML Usability and Scalability

PPoSS:规划:消除 ML 可用性和可扩展性的瓶颈

基本信息

  • 批准号:
    2028602
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Machine learning (ML) has the potential to dramatically benefit many aspects of daily life. Applications range from consumer and business technologies (virtual assistants) to transportation (driver assistance and self-driving cars) to health care (hospital observation and physician assistance) and science. Unfortunately, using ML techniques to solve specific, real-world problems remains difficult. Building ML applications often requires a multi-step, iterative process that involves repeated cycles of prototyping, evaluating results, and fixing failures. This project aims to dramatically reduce the difficulty of this iterative process, making it easier for a single person to quickly build ML applications to solve real-world problems.The technical goal of this project is to dramatically scale the productivity of the entire end-to-end ML model-development workflow so that a single subject-matter expert, armed with a large dataset and access to datacenter-scale accelerated compute capability, can build accurate models for new tasks in hours to days instead of weeks or months. To this end, the project will create automated tools that directly empower subject-matter experts to perform model-development tasks, in rapid iterative loops. These intelligent tools must execute with low latency and scale to huge datasets and potentially large, complex models. To meet these requirements, this project will combine new methods for automatically generated supervision from weak sources and for curating critical data for training and validation, new ML programming abstractions, and reconfigurable ML hardware accelerators to support a heterogeneous set of future use cases and algorithmic techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)有可能极大地造福于日常生活的许多方面。应用范围从消费者和商业技术(虚拟助手)到交通(驾驶员辅助和自动驾驶汽车),再到医疗保健(医院观察和医生辅助)和科学。不幸的是,使用ML技术来解决特定的现实问题仍然很困难。构建ML应用程序通常需要一个多步骤的迭代过程,其中包括重复的原型设计、评估结果和修复故障。该项目旨在大幅降低这种迭代过程的难度,使单个人更容易快速构建ML应用程序来解决现实世界的问题。该项目的技术目标是大幅扩展整个端到端ML模型开发工作流程的生产力,以便单个主题专家,配备大型数据集并访问企业级加速计算能力,可以在几小时到几天内为新任务建立准确的模型,而不是几周或几个月。为此,该项目将创建自动化工具,直接授权主题专家在快速迭代循环中执行模型开发任务。这些智能工具必须以低延迟执行,并可扩展到巨大的数据集和潜在的大型复杂模型。为了满足这些要求,该项目将联合收割机结合新的方法,用于从弱源自动生成监督,并为训练和验证管理关键数据,新的ML编程抽象,和可重新配置的机器学习硬件加速器,以支持未来的异构用例和算法技术。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oyekunle Olukotun其他文献

Oyekunle Olukotun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oyekunle Olukotun', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: A Stateful Switch Architecture for In-Network Compute
合作研究:CNS Core:Medium:用于网内计算的有状态交换机架构
  • 批准号:
    2211384
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RTML: Large: Continuous Adaptation for Decision Streams
RTML:大:决策流的持续适应
  • 批准号:
    1937301
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: From Volume to Velocity: Big Data Analytics in Near-Realtime
SHF:媒介:协作研究:从数量到速度:近实时的大数据分析
  • 批准号:
    1563078
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SHF: Medium: PRISM: Platform for Rapid Investigation of efficient Scientific-computing & Machine-learning
SHF:媒介:PRISM:高效科学计算快速研究平台
  • 批准号:
    1563113
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
XPS:DSD:Synthesizing Domain Specific Systems
XPS:DSD:综合领域特定系统
  • 批准号:
    1337375
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
BIGDATA: Mid-Scale: DA: Collaborative Research: Genomes Galore - Core Techniques, Libraries, and Domain Specific Languages for High-Throughput DNA Sequencing
大数据:中规模:DA:协作研究:基因组丰富 - 高通量 DNA 测序的核心技术、库和领域特定语言
  • 批准号:
    1247701
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SHF: Large: Domain Specific Language Infrastructure for Biological Simulation Software
SHF:大型:生物模拟软件的领域特定语言基础设施
  • 批准号:
    1111943
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CSR---AES: Universal Transactions
CSR---AES:通用交易
  • 批准号:
    0720905
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Extending the Limits of Large-Scale Shared Memory Multiprocessors
扩展大规模共享内存多处理器的限制
  • 批准号:
    0444470
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ITR: Prototyping Multithreaded Systems
ITR:多线程系统原型设计
  • 批准号:
    0220138
  • 财政年份:
    2002
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似海外基金

HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10103131
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    EU-Funded
Planning Grant: Developing capacity to attract diverse students to the geosciences: A public relations framework
规划补助金:培养吸引多元化学生学习地球科学的能力:公共关系框架
  • 批准号:
    2326816
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Planning: FIRE-PLAN: Building Wildland Fire Science Capacity in Alaska Through The University of Alaska Fairbanks Rural Campuses
规划:FIRE-PLAN:通过阿拉斯加大学费尔班克斯乡村校区建设阿拉斯加荒地火灾科学能力
  • 批准号:
    2333423
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335568
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335569
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Planning: FIRE-PLAN: Exploring fire as medicine to revitalize cultural burning in the Upper Midwest
规划:FIRE-PLAN:探索火作为药物,以振兴中西部北部的文化燃烧
  • 批准号:
    2349282
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CC* Planning: Strengthening Central Michigan University's Cyberinfrastructure
CC* 规划:加强中央密歇根大学的网络基础设施
  • 批准号:
    2345749
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
  • 批准号:
    2412406
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了