Extending the Limits of Large-Scale Shared Memory Multiprocessors

扩展大规模共享内存多处理器的限制

基本信息

  • 批准号:
    0444470
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-11-01 至 2007-10-31
  • 项目状态:
    已结题

项目摘要

The objective of this research is to substantially improve the productivity of programmers writingapplications for petaflop-scale systems by using programmer defined light-weight transactions as thesingle abstraction for expressing parallelism, delineating communication, reasoning about memoryconsistency, providing failure recovery, and allowing performance optimization. Transactions as thecentral abstraction for designing and programming parallel systems leads to a shared memoryprogramming and memory coherence model called Transaction Coherence and Consistency (TCC).Transactions simplify parallel programming by providing a way of writing correct shared-memoryprograms without threads, locks and semaphores. TCC systems provide high performance communicationand synchronization with support for hardware mechanisms that can keep memory coherent andconsistent based on programmer-defined transactions.To achieve the research objective, this research program will focus on five activities. First, the researcherswill develop new abstractions that use transactions to provide a shared memory programming model thatmakes it much easier to analyze and optimize application performance. Second, the researchers willdevelop performance monitoring systems that make use of transactions to detect performance bottlenecksand to provide intuitive feedback to programmers. Third, the researchers will use the transaction basedprogramming model to implement compiler-based static and dynamic feedback-directed optimizationsthat automatically detect and eliminate performance bottlenecks and extend the scalability of transactioncoherency to 105 processors. Fourth, the researchers will use transactions to optimize the performance ofparallel storage I/O. Finally, the researchers will develop simulation and emulation technology that willenable us to experiment with petaflop-scale systems that support light-weight transactions before they areavailable.Broader ImpactsThe broad impact of this research is to use transaction-based parallel programming to educate and enablea new class of parallel software developers who can implement parallel software with the same facilitythat sequential software is written today. Enabling parallel software development will be critical toadvancing computing performance from desktop applications to large-scale scientific and commercialapplications. While parallel processing has been essential for large-scale machines for a while, recentannouncements by Intel, AMD and IBM demonstrate that it will soon be critical for desktop applicationsas well. To educate students, other researchers, and industry about the benefits of transaction-basedparallel programming, we will incorporate transactional programming concepts in the parallelprogramming curriculum and make transaction-based applications available to the wider scientificcommunity. The researchers expect that releasing a suite of optimized transaction-based applicationsalong with simulation technology will be instrumental in encouraging other researchers to experimentwith and explore the benefits of transactions. To further promote the use of transaction-based parallelprogramming we will organize a tutorial or workshop at a major scientific computing conference that willcover the principles and experience of programming with transactions.
本研究的目的是通过使用程序员定义的轻量级事务作为表示并行性、描述通信、推理内存一致性、提供故障恢复和允许性能优化的单一抽象,来大幅提高程序员为petaflop规模系统编写应用程序的生产率。事务作为并行系统设计和编程的核心抽象,提出了一种共享内存编程和内存一致性模型,称为事务一致性和一致性(TransactionCoherence and Consistency,TCC),它提供了一种无需线程、锁和信号量就能编写正确的共享内存程序的方法,从而简化了并行程序设计。TCC系统提供了高性能的通信和同步,支持硬件机制,可以根据程序员定义的事务保持内存一致性和一致性。首先,研究人员将开发新的抽象,使用事务来提供共享内存编程模型,使分析和优化应用程序性能变得更加容易。其次,研究人员将开发性能监控系统,利用事务来检测性能检查,并为程序员提供直观的反馈。第三,研究人员将使用基于事务的编程模型来实现基于编译器的静态和动态反馈导向优化,自动检测和消除性能瓶颈,并将transactioncoherency的可扩展性扩展到105个处理器。第四,研究人员将使用事务来优化并行存储I/O的性能。最后,研究人员将开发模拟和仿真技术,使我们能够在支持轻量级事务的千万次浮点运算规模系统可用之前对其进行实验。更广泛的影响这项研究的广泛影响是使用基于事务的并行编程来教育和支持一类新的并行软件开发人员,他们可以使用与今天编写的顺序软件相同的设施来实现并行软件。支持并行软件开发对于提高从桌面应用到大规模科学和商业应用的计算性能至关重要。虽然并行处理对于大规模机器来说已经是必不可少的一段时间了,但英特尔、AMD和IBM最近的声明表明,它很快也将对桌面应用程序至关重要。为了让学生、其他研究人员和业界了解基于事务的并行编程的好处,我们将在并行编程课程中纳入事务编程的概念,并使基于事务的应用程序可供更广泛的科学界使用。研究人员预计,发布一套优化的基于交易的应用程序以及模拟技术将有助于鼓励其他研究人员试验和探索交易的好处。为了进一步促进基于事务的并行编程的使用,我们将在一个主要的科学计算会议上组织一个教程或研讨会,其中将涵盖使用事务编程的原理和经验.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oyekunle Olukotun其他文献

Oyekunle Olukotun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oyekunle Olukotun', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: A Stateful Switch Architecture for In-Network Compute
合作研究:CNS Core:Medium:用于网内计算的有状态交换机架构
  • 批准号:
    2211384
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
PPoSS: Planning: Eliminating the Bottlenecks to ML Usability and Scalability
PPoSS:规划:消除 ML 可用性和可扩展性的瓶颈
  • 批准号:
    2028602
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RTML: Large: Continuous Adaptation for Decision Streams
RTML:大:决策流的持续适应
  • 批准号:
    1937301
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: From Volume to Velocity: Big Data Analytics in Near-Realtime
SHF:媒介:协作研究:从数量到速度:近实时的大数据分析
  • 批准号:
    1563078
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
SHF: Medium: PRISM: Platform for Rapid Investigation of efficient Scientific-computing & Machine-learning
SHF:媒介:PRISM:高效科学计算快速研究平台
  • 批准号:
    1563113
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
XPS:DSD:Synthesizing Domain Specific Systems
XPS:DSD:综合领域特定系统
  • 批准号:
    1337375
  • 财政年份:
    2013
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
BIGDATA: Mid-Scale: DA: Collaborative Research: Genomes Galore - Core Techniques, Libraries, and Domain Specific Languages for High-Throughput DNA Sequencing
大数据:中规模:DA:协作研究:基因组丰富 - 高通量 DNA 测序的核心技术、库和领域特定语言
  • 批准号:
    1247701
  • 财政年份:
    2013
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
SHF: Large: Domain Specific Language Infrastructure for Biological Simulation Software
SHF:大型:生物模拟软件的领域特定语言基础设施
  • 批准号:
    1111943
  • 财政年份:
    2011
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CSR---AES: Universal Transactions
CSR---AES:通用交易
  • 批准号:
    0720905
  • 财政年份:
    2007
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
ITR: Prototyping Multithreaded Systems
ITR:多线程系统原型设计
  • 批准号:
    0220138
  • 财政年份:
    2002
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant

相似海外基金

Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Research Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
CAREER: Large-Scale Theoretical Capabilities for Exploring the Limits of Nuclear Stability
职业:探索核稳定性极限的大规模理论能力
  • 批准号:
    2238752
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Robust Decentralized Control of Large-Scale Networked Systems: Fundamental Limits and Data-Driven Feedbacks
大规模网络系统的鲁棒分散控制:基本限制和数据驱动的反馈
  • 批准号:
    RGPIN-2019-04159
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Decentralized Control of Large-Scale Networked Systems: Fundamental Limits and Data-Driven Feedbacks
大规模网络系统的鲁棒分散控制:基本限制和数据驱动的反馈
  • 批准号:
    RGPIN-2019-04159
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
Large symmetrised systems of interacting Brownian bridges and random interlacements and their scaling limits
相互作用的布朗桥和随机交错的大型对称系统及其尺度限制
  • 批准号:
    2813903
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Studentship
Robust Decentralized Control of Large-Scale Networked Systems: Fundamental Limits and Data-Driven Feedbacks
大规模网络系统的鲁棒分散控制:基本限制和数据驱动的反馈
  • 批准号:
    RGPIN-2019-04159
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Decentralized Control of Large-Scale Networked Systems: Fundamental Limits and Data-Driven Feedbacks
大规模网络系统的鲁棒分散控制:基本限制和数据驱动的反馈
  • 批准号:
    RGPAS-2019-00109
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
CIF: Medium: Discovering Changes in Networks: Fundamental Limits, Efficient Algorithms, and Large-Scale Neuroscience
CIF:中:发现网络的变化:基本限制、高效算法和大规模神经科学
  • 批准号:
    1955981
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Robust Decentralized Control of Large-Scale Networked Systems: Fundamental Limits and Data-Driven Feedbacks
大规模网络系统的鲁棒分散控制:基本限制和数据驱动的反馈
  • 批准号:
    RGPIN-2019-04159
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了