EAGER: SARE: Directional Modulation Non-Contiguous OFDM Retrodirective Communication for Secure IoT

EAGER:SARE:用于安全物联网的定向调制非连续 OFDM 反向通信

基本信息

  • 批准号:
    2028823
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

In the upcoming era of the Internet-of-Things (IoT), billions of physical devices will be networked together and enable emerging concepts, such as smart homes and smart cities, leading to new paradigms for connected human societies. As such, devices such as intelligent sensors and controllers—often operating on small-capacity batteries and running applications on ultra-low-power processors—will need to be able to communicate with each other, while being connected to the internet cloud. In this scenario, IoT gateways serve as an essential component in bridging IoT devices and the internet. As the IoT gateways will need to deal with critical tasks at the edge IoT devices, it is essential to ensure secure communication links between the gateway and the devices against any spoofing attacks by adversarial entities. Since end-to-end encrypted sessions between the edge devices and the gateway cannot be relied upon for secure communications due to the high computational resource demand and battery burden of such cryptographic strategies, there is an urgent need to develop physical-layer (PHY) secure communication schemes. To this end, this project develops a directional modulation non-contiguous orthogonal frequency division multiplexing (NC-OFDM) retrodirective communication scheme that will have a profound impact in securing IoT applications. The outcome of this project will enable a highly secure PHY communication scheme among the IoT devices and gateways against malicious spoofing attacks. Furthermore, the unique combination of NC-OFDM and directional modulation retrodirective array will make such attacks very unlikely to succeed even with sophisticated machine learning (ML) techniques. In addition, the educational plan of the project aims to broaden participation of graduate, undergraduate and high school students, including underrepresented minority groups, in relevant research on microwave and antenna technologies, signal processing and ML, and wireless communications.In terms of technical details, the research project addresses a critical security issue in IoT applications that are susceptible to malicious spoofing attacks via an innovative PHY solution combining NC-OFDM transmission and a directional modulation retrodirective array. As compared with traditional OFDM transmissions, NC-OFDM transmissions take place over a subset of active subcarriers to either avoid incumbent transmissions or for strategic considerations. As such, NC-OFDM transmissions have low probability of exploitation characteristics against classic attacks based on cyclostationary analysis. On the other hand, retrodirective antenna arrays are well known to be able to respond to an interrogator by sending signals back to the interrogator location without a priori knowledge, which is particularly useful in a multipath-rich environment. By incorporating the directional modulation technique, the antenna array will corrupt the information by distorting the digital modulation’s constellation diagrams in all unwanted transmitting directions. One way to realize the directional modulation functionality is to use time-modulated antenna arrays, in which the aliasing effects resulting from the time-modulation frequency are used to distort the signals in the undesired directions. Furthermore, the unique integration of NC-OFDM and directional modulation enabled by a time-modulated retrodirective antenna array whose modulation frequency is the NC-OFDM subcarrier can potentially lead to an unprecedented level of PHY hardware security against spoofing attacks by an adversary, even when the adversary is equipped with sophisticated ML-based attack techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在即将到来的The Internet Internet时代(IoT),数十亿个物理设备将被共同建立联系,并实现新兴概念,例如智能家居和智能城市,从而为连接的人类社会带来了新的范式。因此,诸如智能传感器和控制器之类的设备(通常是在小容量电池上操作,并且在超低功率处理器上运行应用程序)将需要能够相互通信,同时连接到Internet Cloud。在这种情况下,IoT网关是桥接IoT设备和Internet的重要组成部分。由于IoT网关将需要处理边缘IoT设备的关键任务,因此必须确保网关和设备之间的安全通信链接,以防止对抗性实体的任何欺骗攻击。由于由于高度计算资源需求和此类加密策略的电池燃烧,因此无法依靠边缘设备和网关之间的端到端加密会话来进行安全通信,因此迫切需要开发物理层(PHY)安全的通信方案。为此,该项目开发了一个定向的调制,非连续的正交频分多路复用(NC-OFDM)翻新通信方案,该方案将对确保IoT应用程序产生深远的影响。该项目的结果将使物联网设备和门户之间具有高度安全的PHY通信计划,以防止恶意欺骗攻击。此外,NC-OFDM和指令调制阵列的独特组合将使这种攻击也不太可能成功,即使使用复杂的机器学习(ML)技术。 In addition, the educational plan of the project aims to broaden participation of graduate, undergraduate and high school students, including underrepresented minority groups, in relevant research on microwave and antenna technologies, signal processing and ML, and wireless communications.In terms of technical details, the research project addresses a critical security issue in IoT applications that are susceptible to malicious spoofing attacks via an innovative PHY solution combining NC-OFDM传输和有向的调制转型阵列。与传统的OFDM传输相比,NC-OFDM传输发生在主动子载体的子集中,以避免现有传输或进行战略考虑。因此,基于环固化分析的经典攻击,NC-OFDM传输的开发特征的可能性较低。另一方面,众所周知,转化的天线阵列能够​​通过在没有先验知识的情况下将信号发送回询问器位置来响应询问器,这在多径富的环境中特别有用。通过合并定向调制技术,天线阵列将通过在所有不需要的传输方向上扭曲数字调制的星座图来破坏信息。实现定向调制功能的一种方法是使用时间调节的天线阵列,其中使用时间调制频率引起的混叠效应用于在不希望的方向上扭曲信号。此外,NC-OFDM和定向调节的独特整合是由时间调制的转换性天线阵列来实现的,其调节频率是NC-OfdM子载波,可能会导致前所未有的PHY硬件安全性,即使是对敌人的攻击,即使是对群众的攻击,也可以使众多基于众多的攻击技术,这是众多基于众多的攻击技术。任务,并通过评估使用基金会的知识分子和更广泛的影响审查标准,被认为是宝贵的支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metamaterial-Enabled 2D Directional Modulation Array Transmitter for Physical Layer Security in Wireless Communication Links
支持超材料的 2D 定向调制阵列发射机,用于无线通信链路中的物理层安全
A Distributed Mixer-Based Nonreciprocal CRLH Leaky Wave Antenna for Simultaneous Transmit and Receive
基于分布式混频器的同时发射和接收的不可逆 CRLH 漏波天线
Frequency dependent parametric radiation through a nonlinear fundamentally slow travelling wave structure
  • DOI:
    10.1002/mop.32950
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Shuping Li;Minning Zhu;Yichao Yuan;C. Wu
  • 通讯作者:
    Shuping Li;Minning Zhu;Yichao Yuan;C. Wu
Programming Wireless Security Through Learning‐Aided Spatiotemporal Digital Coding Metamaterial Antenna
  • DOI:
    10.1002/aisy.202300341
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Alireza Nooraiepour;Shaghayegh Vosoughitabar;C. Wu;W. Bajwa;N. Mandayam
  • 通讯作者:
    Alireza Nooraiepour;Shaghayegh Vosoughitabar;C. Wu;W. Bajwa;N. Mandayam
Hyphylearn: A Domain Adaptation-Inspired Approach to Classification Using Limited Number of Training Samples
Hyphylearn:使用有限数量的训练样本进行领域适应启发的分类方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chung-Tse Wu其他文献

Chung-Tse Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chung-Tse Wu', 18)}}的其他基金

Travel: Student Travel Support for 2024 IEEE Radio & Wireless Week (RWW)
旅行:2024 年 IEEE 广播学生旅行支持
  • 批准号:
    2329626
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SWIFT: Intelligent Spatio-Temporal Metamaterial Massive MIMO Aperture Arrays with Hybrid Learning-based Channel Classifiers for Spectrum-Efficient Secured Wireless Communication
SWIFT:智能时空超材料大规模 MIMO 孔径阵列,具有基于混合学习的信道分类器,可实现频谱高效的安全无线通信
  • 批准号:
    2229384
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Graduate Student Travel Support for 2019 International Conference on Microwaves for Intelligent Mobility (ICMIM)to be held in Detroit, Michigan, April 15-16, 2019.
2019 年智能移动微波国际会议 (ICMIM) 研究生旅行支持将于 2019 年 4 月 15 日至 16 日在密歇根州底特律举行。
  • 批准号:
    1912499
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Spectrally-Encoded Ultrafast Microwave Panoramic Camera
职业:光谱编码超快微波全景相机
  • 批准号:
    1818478
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Spectrally-Encoded Ultrafast Microwave Panoramic Camera
职业:光谱编码超快微波全景相机
  • 批准号:
    1552958
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceiversfor IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
  • 批准号:
    2029407
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Collaborative Research: Exploring and Mitigating Attacks of Millimeter-wave Radar Sensors in Autonomous Vehicles
EAGER:SARE:协作研究:探索和减轻自动驾驶汽车中毫米波雷达传感器的攻击
  • 批准号:
    2028872
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Multiferroic Shields for Smart Analog Security
EAGER:SARE:用于智能模拟安全的多铁屏蔽
  • 批准号:
    2029007
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Secure LiDAR Systems with Frequency Encryption
EAGER:SARE:具有频率加密功能的安全 LiDAR 系统
  • 批准号:
    2028406
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER SARE: Physical-Layer Security of THz Communication Using Orbital Angular Momentum and Rapid Frequency Hopping
EAGER SARE:使用轨道角动量和快速跳频的太赫兹通信物理层安全
  • 批准号:
    2028824
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了