Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network

合作研究:PPoSS:规划:硬件加速的可信深度神经网络

基本信息

  • 批准号:
    2028876
  • 负责人:
  • 金额:
    $ 7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Deep-learning approaches have recently achieved much higher accuracy than traditional machine-learning approaches in various applications (e.g., computer vision, virtual/augmented reality, and natural language processing). Existing research has shown that large-scale data from various sources with high-resolution sensing or large-volume data-collection capabilities can significantly improve the performance of deep-learning approaches. However, state-of-the-art hardware and software cannot provide sufficient computing capabilities and resources to ensure accurate deep-learning performance in a timely manner when using extremely large-scale data. This project develops a scalable and robust heterogeneous system that includes a new low-cost, secure, deep-learning hardware-accelerator architecture and a suite of large-data-compatible deep-learning algorithms. It allows deep learning to fully benefit from extremely large-scale data and facilitates efficient, low-latency applications in connected vehicles, real-time mobile applications, and timely precision health. The new technologies resulting from this project can enable more research opportunities to design new hardware accelerators for deep learning and obtain further optimization in computational complexity and reduction in power consumption. Moreover, by integrating the research results with the undergraduate and graduate curricula and outreach activities, this project has great impacts on education and training of researchers and engineers for computer architecture, security, theory and algorithms, and systems.This project designs trustworthy hardware accelerators optimized for large-scale deep-learning computations and models the complicated structure of large-scale datasets. More specifically, this project develops a novel hardware accelerator for deep learning that can achieve low power consumption. In addition, this project designs innovative in-memory encryption schemes to secure the neural models in deep-learning accelerators. Furthermore, data-modeling and statistical-learning algorithms are developed in this project to further reduce the computing cost of deep learning when processing extremely large-scale datasets. Finally, this project builds and evaluates a prototype of the proposed heterogeneous deep-learning system in terms of efficiency, scalability, and security in multiple application domains including mobile applications, connected vehicles and precision health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近,深度学习方法在各种应用(例如,计算机视觉、虚拟/增强现实和自然语言处理)中获得了比传统机器学习方法高得多的准确率。现有研究表明,来自各种来源的具有高分辨率传感或大容量数据收集能力的大规模数据可以显著提高深度学习方法的性能。然而,在使用超大规模数据时,最先进的硬件和软件无法提供足够的计算能力和资源来确保及时准确的深度学习性能。该项目开发了一个可扩展和健壮的异构系统,其中包括一个新的低成本、安全的深度学习硬件加速器体系结构和一套大数据兼容的深度学习算法。它允许深度学习充分受益于超大规模数据,并促进互联车辆中高效、低延迟的应用程序、实时移动应用程序和及时的精准健康。该项目产生的新技术可以使更多的研究机会设计用于深度学习的新硬件加速器,并在计算复杂性和降低功耗方面获得进一步优化。此外,通过将研究成果与本科生和研究生课程以及推广活动相结合,该项目对研究人员和工程师在计算机体系结构、安全、理论和算法以及系统方面的教育和培训产生了巨大影响,该项目设计了针对大规模深度学习计算进行优化的可靠硬件加速器,并对大规模数据集的复杂结构进行了建模。更具体地说,本项目开发了一种新型的深度学习硬件加速器,可以实现低功耗。此外,本项目设计了创新的内存加密方案,以确保深度学习加速器中的神经模型的安全。此外,该项目还开发了数据建模和统计学习算法,以进一步降低处理超大规模数据集时深度学习的计算成本。最后,该项目从移动应用、互联车辆和精确医疗等多个应用领域的效率、可扩展性和安全性方面构建并评估了建议的异构式深度学习系统的原型。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
WearID: Low-Effort Wearable-Assisted Authentication of Voice Commands via Cross-Domain Comparison without Training
Defending against Thru-barrier Stealthy Voice Attacks via Cross-Domain Sensing on Phoneme Sounds
通过音素声音的跨域感知防御穿墙隐形语音攻击
Enabling Finger-Touch-Based Mobile User Authentication via Physical Vibrations on IoT Devices
  • DOI:
    10.1109/tmc.2021.3057083
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    X. Yang;Song Yang;Jian Liu;Chen Wang;Yingying Chen;Nitesh Saxena
  • 通讯作者:
    X. Yang;Song Yang;Jian Liu;Chen Wang;Yingying Chen;Nitesh Saxena
mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave
Face-Mic: inferring live speech and speaker identity via subtle facial dynamics captured by AR/VR motion sensors
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingying Chen其他文献

Direct Load Control by Distributed Imperialist Competitive Algorithm
分布式帝国主义竞争算法的直接负载控制
Preliminary measurements of fluorescent aerosol number concentrations using a laser-induced fluorescence lidar
使用激光诱导荧光激光雷达初步测量荧光气溶胶数浓度
  • DOI:
    10.1364/ao.57.007211
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Zhimin Rao;Tingyao He;Dengxin Hua;Yunlong Wang;Xusheng Wang;Yingying Chen;Jing Le
  • 通讯作者:
    Jing Le
Who Will Tell the Stories of Health Inequities? Platform Challenges (and Opportunities) in Local Civic Information Infrastructure
谁来讲述健康不平等的故事?
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ava Francesca Battocchio;Kjerstin Thorson;Dan Hiaeshutter;Marisa Smith;Yingying Chen;S. Edgerly;Kelley Cotter;Hyesun Choung;Chuqing Dong;Moldir Moldagaliyeva;Christopher E. Etheridge
  • 通讯作者:
    Christopher E. Etheridge
Bipartite Graph Matching Based Secret Key Generation
基于二分图匹配的密钥生成
Catalytic oxidation of CO on mesoporous codoped ceria catalysts: Insights into the correlation of physicochemical property and catalytic activity
介孔共掺杂二氧化铈催化剂上 CO 的催化氧化:深入了解理化性质与催化活性的相关性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Hongjian Zhu;Yingying Chen;Yibo Gao;Wenxu Liu;Zhongpeng Wang;Chenchen Cui;Wei Liu;Liguo Wang
  • 通讯作者:
    Liguo Wang

Yingying Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingying Chen', 18)}}的其他基金

Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
SHF: Small: A General Framework for Accelerating AI on Resource-Constrained Edge Devices
SHF:小型:在资源受限的边缘设备上加速 AI 的通用框架
  • 批准号:
    2211163
  • 财政年份:
    2022
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120396
  • 财政年份:
    2021
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Securing IoT and Edge Devices under Audio Adversarial Attacks
协作研究:SaTC:核心:小型:在音频对抗攻击下保护物联网和边缘设备
  • 批准号:
    2114220
  • 财政年份:
    2021
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Software Hardware Architecture Co-design for Low-power Heterogeneous Edge Devices
SHF:小型:协作研究:低功耗异构边缘设备的软件硬件架构协同设计
  • 批准号:
    1909963
  • 财政年份:
    2019
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Security Assurance in Short Range Communication with Wireless Channel Obfuscation
SaTC:核心:小型:协作:通过无线信道混淆实现短距离通信的安全保证
  • 批准号:
    1814590
  • 财政年份:
    2018
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Exploiting Physical Properties in Wireless Networks for Implicit Authentication
SaTC:核心:小型:协作:利用无线网络中的物理属性进行隐式身份验证
  • 批准号:
    1716500
  • 财政年份:
    2017
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1826647
  • 财政年份:
    2017
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Collaborative: Exploiting Physical Properties in Wireless Networks for Implicit Authentication
SaTC:核心:小型:协作:利用无线网络中的物理属性进行隐式身份验证
  • 批准号:
    1820624
  • 财政年份:
    2017
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1514436
  • 财政年份:
    2015
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316159
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了