RAPID: Improved phylogenetic approaches for characterizing the epidemiological dynamics of COVID-19

RAPID:改进的系统发育方法用于表征 COVID-19 的流行病学动态

基本信息

  • 批准号:
    2028986
  • 负责人:
  • 金额:
    $ 10.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Phylogenetic trees constructed from viral genomes sampled from patients contain information about the historical pattern of transmission and dispersal of infectious diseases. Mathematical models of evolution allow researchers to infer critical epidemiological parameters, such as the transmission rate, from the information encoded in phylogenetic trees. Because future predictions and policy decisions depend on these estimates, it is crucial that their accuracy and limitations are well understood. Recent findings suggest that many commonly used mathematical models of disease evolution may yield highly inaccurate parameter estimates and may severely underestimate the associated uncertainty, thus potentially leading to sub-optimal policy decisions that are either ineffective or needlessly disruptive. This project will clarify precisely what epidemiological insights can be reliably inferred from phylogenetic trees and will develop new approaches to robustly characterize the spatial and temporal spread of COVID-19. Further, the project will determine which environmental, biological and policy factors affect the spread of COVID-19 based on phylogenetic data. The computational methods developed will be shared as standalone open source R packages that can be used for analyzing and guiding decisions against ongoing and future epidemics.This project will use mathematical and computational methods to examine how and to what extent transmission, recovery and detection rates as well as the basic reproduction ratio (R0) and pathogen prevalence could possibly be estimated from phylogenetic data. The project will focus on models commonly used in phylogenetic epidemiology, including birth-death-sampling models and coalescent models with variable rates through time. The project will investigate whether the likelihood function of these models can be brought into special forms that reveal which epidemiological scenarios can possibly be statistically distinguished, similarly to the researchers' recent work on macroevolutionary birth-death models. Further, the researchers will develop more robust measures to characterize pathogen population dynamics over space and time from phylogenetic data, than currently possible. To that end, they will simulate a large number of epidemiological models and search for quantities that are preserved across statistically indistinguishable scenarios. The researchers will focus on the SARS-CoV-2 clade (the virus causing COVID-19) and will examine the implications of their findings for COVID-19 spread dynamics, based on published genomic data. In particular, they will perform comparative analyses between SARS-CoV-2 sub-clades as well as over space and time, to determine how various environmental, biological and policy factors affect the spread of the virus.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从病人身上取样的病毒基因组构建的系统发育树包含了传染病传播和扩散的历史模式的信息。进化的数学模型使研究人员能够从系统发育树中编码的信息推断关键的流行病学参数,如传播率。由于未来的预测和政策决定取决于这些估计,因此很好地理解其准确性和局限性至关重要。最近的研究结果表明,许多常用的疾病演变的数学模型可能会产生高度不准确的参数估计,并可能严重低估了相关的不确定性,从而可能导致次优的政策决定,要么是无效的或不必要的破坏性。该项目将准确阐明从系统发育树中可以可靠地推断出哪些流行病学见解,并将开发新的方法来强有力地表征COVID-19的时空传播。此外,该项目将根据系统发育数据确定哪些环境、生物和政策因素影响COVID-19的传播。开发的计算方法将作为独立的开源R包共享,可用于分析和指导针对当前和未来流行病的决策。该项目将使用数学和计算方法来研究如何以及在多大程度上可以从系统发育数据中估计传播率、恢复率和检出率以及基本繁殖率(R 0)和病原体流行率。该项目将侧重于系统发育流行病学中常用的模型,包括出生-死亡-采样模型和随时间变化的结合模型。该项目将研究这些模型的似然函数是否可以被带入特殊形式,以揭示哪些流行病学场景可能在统计上被区分,类似于研究人员最近对宏观进化出生-死亡模型的研究。此外,研究人员将开发出比目前更强大的措施,从系统发育数据中表征病原体种群在空间和时间上的动态。为此,他们将模拟大量的流行病学模型,并寻找在统计上无法区分的情景中保留的数量。研究人员将专注于SARS-CoV-2进化枝(引起COVID-19的病毒),并将根据已发表的基因组数据研究他们的发现对COVID-19传播动力学的影响。特别是,他们将在SARS-CoV-2亚型之间以及在空间和时间上进行比较分析,以确定各种环境,生物和政策因素如何影响病毒的传播。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stilianos Louca其他文献

Function and functional redundancy in microbial systems
微生物系统中的功能和功能冗余
  • DOI:
    10.1038/s41559-018-0519-1
  • 发表时间:
    2018-04-16
  • 期刊:
  • 影响因子:
    14.500
  • 作者:
    Stilianos Louca;Martin F. Polz;Florent Mazel;Michaeline B. N. Albright;Julie A. Huber;Mary I. O’Connor;Martin Ackermann;Aria S. Hahn;Diane S. Srivastava;Sean A. Crowe;Michael Doebeli;Laura Wegener Parfrey
  • 通讯作者:
    Laura Wegener Parfrey
Function and functional redundancy in microbial systems-Supplementary Material -
微生物系统中的功能和功能冗余-补充材料-
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stilianos Louca;M. Polz;Florent Mazel;Michaeline B. N. Albright;J. Huber;I. Mary;O’Connor;M. Ackermann;A. Hahn;D. Srivastava;S. Crowe;Michael;Doebeli;L. Parfrey
  • 通讯作者:
    L. Parfrey
Stationary States in Infinite Networks of Spiking Oscillators with Noise
带有噪声的尖峰振荡器的无限网络中的静止状态
  • DOI:
    10.1137/120880264
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stilianos Louca;F. Atay
  • 通讯作者:
    F. Atay
Probing the metabolism of microorganisms
探究微生物的新陈代谢
  • DOI:
    10.1126/science.aar2000
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Stilianos Louca
  • 通讯作者:
    Stilianos Louca
Effects of forced taxonomic transitions on metabolic composition and function in microbial microcosms.
强制分类转变对微生物微观世界代谢组成和功能的影响。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Stilianos Louca;Ilan N. Rubin;L. L. Madilao;J. Bohlmann;M. Doebeli;L. Parfrey
  • 通讯作者:
    L. Parfrey

Stilianos Louca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stilianos Louca', 18)}}的其他基金

Desiccation-based microbial sample preservation in remote regions
偏远地区基于干燥的微生物样本保存
  • 批准号:
    2243038
  • 财政年份:
    2023
  • 资助金额:
    $ 10.53万
  • 项目类别:
    Standard Grant
PurSUiT: Uncovering bacterial and archaeal diversity in Great Basin hot springs
追求:揭示大盆地温泉中细菌和古菌的多样性
  • 批准号:
    2241193
  • 财政年份:
    2023
  • 资助金额:
    $ 10.53万
  • 项目类别:
    Standard Grant
Improving FAPROTAX, a popular tool for predicting metabolic phenotypes in microbiome surveys
改进 FAPROTAX,一种在微生物组调查中预测代谢表型的流行工具
  • 批准号:
    2135169
  • 财政年份:
    2022
  • 资助金额:
    $ 10.53万
  • 项目类别:
    Standard Grant

相似海外基金

Developing causal inference methods to evaluate and leverage spillover effects through social Interactions for designing improved HIV prevention interventions
开发因果推理方法,通过社会互动评估和利用溢出效应,设计改进的艾滋病毒预防干预措施
  • 批准号:
    10762679
  • 财政年份:
    2023
  • 资助金额:
    $ 10.53万
  • 项目类别:
A novel method for improved separation of metagenomic samples for preservation and identification.
一种改进宏基因组样本分离以保存和鉴定的新方法。
  • 批准号:
    10324639
  • 财政年份:
    2021
  • 资助金额:
    $ 10.53万
  • 项目类别:
Improved understanding of TB transmission by accounting for within-host heterogeneity of M. tuberculosis: A population-based molecular epidemiology study in a high HIV prevalent setting
通过考虑结核分枝杆菌的宿主内异质性,提高对结核病传播的理解:在艾滋病毒高流行环境中进行的基于人群的分子流行病学研究
  • 批准号:
    10327709
  • 财政年份:
    2020
  • 资助金额:
    $ 10.53万
  • 项目类别:
Improved understanding of TB transmission by accounting for within-host heterogeneity of M. tuberculosis: A population-based molecular epidemiology study in a high HIV prevalent setting
通过考虑结核分枝杆菌的宿主内异质性,提高对结核病传播的理解:在艾滋病毒高流行环境中进行的基于人群的分子流行病学研究
  • 批准号:
    10556340
  • 财政年份:
    2020
  • 资助金额:
    $ 10.53万
  • 项目类别:
Development of an improved core technology for efficient genetic code expansion in biomedical research
开发改进的核心技术,用于生物医学研究中有效的遗传密码扩展
  • 批准号:
    10093096
  • 财政年份:
    2019
  • 资助金额:
    $ 10.53万
  • 项目类别:
Improved Analysis of Metagenomes through the application of Read-Sized Profile HMMs to Marker Gene Subsequences
通过将 Read-Size Profile HMM 应用到标记基因子序列来改进宏基因组分析
  • 批准号:
    9181272
  • 财政年份:
    2016
  • 资助金额:
    $ 10.53万
  • 项目类别:
Integrating functional, phylogenetic and genetic components of diversity for an improved understanding of forest structure, dynamics, and change
整合多样性的功能、系统发育和遗传组成部分,以更好地了解森林结构、动态和变化
  • 批准号:
    1545761
  • 财政年份:
    2016
  • 资助金额:
    $ 10.53万
  • 项目类别:
    Standard Grant
Improved Bayesian phylogenetic inference based on approximate conditional independence
基于近似条件独立性的改进贝叶斯系统发育推断
  • 批准号:
    1354675
  • 财政年份:
    2014
  • 资助金额:
    $ 10.53万
  • 项目类别:
    Standard Grant
A sequenced-based approach for improved small molecule discovery
改进小分子发现的基于测序的方法
  • 批准号:
    7845961
  • 财政年份:
    2010
  • 资助金额:
    $ 10.53万
  • 项目类别:
A sequenced-based approach for improved small molecule discovery
改进小分子发现的基于测序的方法
  • 批准号:
    8274641
  • 财政年份:
    2010
  • 资助金额:
    $ 10.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了