A sequenced-based approach for improved small molecule discovery
改进小分子发现的基于测序的方法
基本信息
- 批准号:8274641
- 负责人:
- 金额:$ 37.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:Actinobacteria classAnabolismAntibioticsBacteriaBase SequenceBiologicalBiological FactorsBiological ProcessBiomedical ResearchCarbonChemicalsCollectionCommunitiesDNA SequenceDataDatabasesEnsureFermentationFingerprintGene Expression ProfilingGeneticGenomeGenomicsGoalsHousingHybridsIndividualInstructionInternetLeadLightMacrolidesMarinesMetabolismMethodologyMethodsModelingMolecularMolecular BankMolecular GeneticsMolecular ProfilingOrphanPathway interactionsPhylogenetic AnalysisPlagueProbabilityProcessProductionProtocols documentationResearchResearch Project GrantsRestriction fragment length polymorphismSequence AnalysisSeriesSourceStructureTargeted ResearchTechniquesTechnologyTestingTime StudyUnited States National Institutes of Healthbasecomparative genomicscytotoxicitydrug developmentdrug discoverygenetic profilinggenome sequencingimprovedliquid chromatography mass spectrometrymethod developmentmicrobialmicroorganismnovelpublic health relevancerepositoryscaffoldsmall moleculetool
项目摘要
DESCRIPTION (provided by applicant): Recent advances in DNA sequencing technologies and a better understanding of natural product biosynthesis provide newfound opportunities to improve the process by which microbial natural products are discovered. The objectives of this research are to establish a series of methodologies by which strains can be quickly assessed for natural product biosynthesis through the analysis of PCR-generated or genome sequence data. The methods will be developed using a model group of marine bacteria belonging to the genus Salinispora and then applied to a large and diverse collection of marine actinomycetes with the aim of discovering structurally diverse, new chemical entities, which will be provided to the NIH Molecular Libraries Small Molecule Repository (MLSMR). The methods include an initial, rapid molecular "fingerprinting" screen, from which the genetic potential of individual strains can be compared. Sequence-based approaches will then be applied to interpret the biosynthetic richness and novelty of strains with promising fingerprints. These methods will make it possible to predict if the metabolites produced by a strain will be new and how many different compounds in a particular structural class may be produced. Once strains with the greatest genetic potential are identified, detailed chemical studies will be performed. This approach represents a dramatic improvement over traditional paradigms in which large numbers of biosynthetically unknown strains are screened in a limited number of conditions. It will dramatically reduce the isolation of previously discovered compounds, a problem that has long plagued microbial natural product research. This approach provides a culture-independent, genome-level assessment of secondary metabolite biosynthesis as opposed to more traditional methods, which detect only those metabolites produced under a limited set of culture conditions. The methods developed will be broadly applicable to the scientific community and include the creation of a curated sequence database that can be readily downloaded and used to assess genome sequence data for pathways involved in secondary metabolite production. This research has the potential to dramatically increase the rates with which new chemical entities are discovered and made available for biomedical research.
PUBLIC HEALTH RELEVANCE: The research presented in this proposal provides a method by which DNA sequence data can be used to dramatically improve the process by which natural products are discovered from microorganisms. It will generate considerable new chemical diversity that can be used for drug discovery research and to study basic biological processes. The methods developed will be made widely available to the research community and thereby have a broad impact on drug discovery and basic biomedical research.
描述(由申请人提供):DNA测序技术的最新进展和对天然产物生物合成的更好理解为改进发现微生物天然产物的过程提供了新的机会。本研究的目的是建立一系列方法,通过分析pcr生成的或基因组序列数据,可以快速评估菌株的天然产物生物合成。这些方法将使用属于Salinispora属的海洋细菌模型群进行开发,然后应用于大量不同的海洋放线菌集合,目的是发现结构多样的新化学实体,这些化学实体将提供给NIH分子文库小分子库(MLSMR)。这些方法包括初始的、快速的分子“指纹”筛选,从中可以比较单个菌株的遗传潜力。然后将应用基于序列的方法来解释具有有希望指纹的菌株的生物合成丰富性和新颖性。这些方法将有可能预测菌株产生的代谢物是否是新的,以及在特定结构类别中可能产生多少不同的化合物。一旦确定了具有最大遗传潜力的菌株,将进行详细的化学研究。这种方法代表了对传统范例的巨大改进,在传统范例中,在有限的条件下筛选大量生物合成未知菌株。它将大大减少先前发现的化合物的分离,这是一个长期困扰微生物天然产物研究的问题。这种方法提供了一种与培养无关的、基因组水平的次生代谢物生物合成评估,而不是更传统的方法,后者只检测在有限的培养条件下产生的代谢物。所开发的方法将广泛适用于科学界,并包括创建一个可随时下载并用于评估涉及次级代谢物产生途径的基因组序列数据的精心设计的序列数据库。这项研究有可能大大提高新化学实体被发现和用于生物医学研究的速度。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Marine Actinobacteria from the Gulf of California: diversity, abundance and secondary metabolite biosynthetic potential.
- DOI:10.1007/s10482-012-9863-3
- 发表时间:2013-04
- 期刊:
- 影响因子:0
- 作者:Becerril-Espinosa A;Freel KC;Jensen PR;Soria-Mercado IE
- 通讯作者:Soria-Mercado IE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL R JENSEN其他文献
PAUL R JENSEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL R JENSEN', 18)}}的其他基金
Changing Paradigms in Natural Product Discovery: A Molecule to Microbe Approach
改变天然产品发现范式:从分子到微生物的方法
- 批准号:
9808022 - 财政年份:2019
- 资助金额:
$ 37.49万 - 项目类别:
A sequenced-based approach for improved small molecule discovery
改进小分子发现的基于测序的方法
- 批准号:
7845961 - 财政年份:2010
- 资助金额:
$ 37.49万 - 项目类别:
A sequenced-based approach for improved small molecule discovery
改进小分子发现的基于测序的方法
- 批准号:
8115914 - 财政年份:2010
- 资助金额:
$ 37.49万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 37.49万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 37.49万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 37.49万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 37.49万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 37.49万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 37.49万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 37.49万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 37.49万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 37.49万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 37.49万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




