EAGER: Field-Deployed Microfluidic Trap Array for Discovery and Observation of Microbial Eukaryotes

EAGER:用于发现和观察微生物真核生物的现场部署微流控陷阱阵列

基本信息

  • 批准号:
    1027125
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-05-01 至 2014-04-30
  • 项目状态:
    已结题

项目摘要

Bacteria and protozoa are critical components of aquatic and terrestrial ecosystems, driving biogeochemical processes including carbon fixation, oxygen production, nutrient cycling, and break-down of anthropogenic contaminants. In many habitats, the bacterial community structure and net production are controlled in a top-down fashion by protozoan predation; in turn, predation of protozoa by larger animals mobilizes nutrients and contaminants to higher trophic levels. Despite their importance, relatively little is known about the diversity, biogeography, and ecosystem function of microbial eukaryotes including protozoa, due to limitations of both traditional culturing methods and genetic techniques. New instrumentation is needed to sample, study and understand a broader range of protozoa in natural systems.The objective of this research is to develop a microfluidic field sampling and analysis tool to study the biogeography and function of microbial eukaryotes in natural habitats. Microfluidic samplers will be fabricated with micron-scale physical features in polydimethylsiloxane (PDMS) and glass. Samplers will be selectively baited and placed in different natural environments in order to select for microorganisms based on morphology, behavior, habitat, and prey source, and will enable direct observation of entrapped live protozoa via light microscopy. Genetic analysis of collected eukaryotes and prokaryotes will help provide a unified framework for taxonomic, functional, and genomic information. Together with co-located micro-scale measurements of environmental variables such as pH, temperature, and nutrient concentrations, this work will enable researchers to place microbial eukaryotes within the context of their immediate physical and chemical microhabitats.This work will enable development and validation of a completely new microbial community analysis tool that will be of immediate and practical use to microbial ecologists, aqueous geochemists, engineers, and marine scientists. It may help to answer fundamental questions in biology including what is the relevant physical scale of community structure variations, and to what extent are protozoan species cosmopolitan vs. endemic in natural habitats? Also, a better understanding of microbial community structure and function will permit better predictions of biogeochemical feedbacks as a function of climate change; improved understand the impacts of microbial community structure and function on contaminant uptake and mobilization, and enhanced risk models for environmental reservoirs of microbial pathogens. Future work will integrate a comprehensive suite of sensing capabilities and will deploy devices in a broader range of natural and engineered microbial habitats. The results of this project will be disseminated through peer-reviewed journals and conference presentations that target the biological user community. Implementation of the technology will be enabled by web-posted demonstration videos that illustrate how samplers are designed, created, tested, deployed, and studied back in the lab. All materials will be available online at http://www.cmbe.engr.uconn.edu/facultyshor.html.
细菌和原生动物是水生和陆地生态系统的重要组成部分,驱动着生物地球化学过程,包括碳固定,氧气生产,营养循环和人为污染物的分解。在许多生境中,细菌群落结构和净产量由原生动物捕食以自上而下的方式控制;反过来,大型动物捕食原生动物将营养物质和污染物转移到更高的营养水平。尽管它们的重要性,相对知之甚少微生物真核生物,包括原生动物的多样性,地理学,和生态系统功能,由于传统的培养方法和遗传技术的限制。本研究的目的是开发一种微流控现场采样和分析工具,用于研究自然环境中微生物真核生物的分布和功能。微流控采样器将在聚二甲基硅氧烷(PDMS)和玻璃中制造微米级的物理特征。采样器将被选择性地放置在不同的自然环境中,以根据形态、行为、栖息地和猎物来源选择微生物,并通过光学显微镜直接观察捕获的活原生动物。收集的真核生物和原核生物的遗传分析将有助于提供一个统一的框架,分类,功能和基因组信息。这项工作将使研究人员能够将微生物真核生物置于其直接的物理和化学微生境中。这项工作将使开发和验证一种全新的微生物群落分析工具成为可能,这将对微生物生态学家,水地球化学家,工程师,海洋科学家。它可能有助于回答生物学中的基本问题,包括群落结构变化的相关物理尺度是什么,以及原生动物物种在自然栖息地中的世界性与地方性在多大程度上?此外,更好地了解微生物群落结构和功能将允许更好地预测生物地球化学反馈作为气候变化的一个功能;更好地了解微生物群落结构和功能对污染物吸收和动员的影响,并增强微生物病原体环境水库的风险模型。未来的工作将整合一套全面的传感能力,并将在更广泛的自然和工程微生物栖息地部署设备。这一项目的成果将通过同行评审的期刊和针对生物学用户群体的会议报告进行传播。该技术的实施将通过网络发布的演示视频来实现,这些视频说明了采样器是如何设计、创建、测试、部署和在实验室中进行研究的。所有材料均可在http://www.cmbe.engr.uconn.edu/facultyshor.html网站上查阅。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leslie Shor其他文献

Understanding the retention of microplastics in wastewater treatment plants: Insights from tracer tests and numerical modeling
理解微塑料在废水处理厂中的保留:示踪试验和数值模拟的见解
  • DOI:
    10.1016/j.envres.2025.122256
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    7.700
  • 作者:
    Ishrat Rashid;Amvrossios Bagtzoglou;Zhiyuan Zhao;Khaled Djebbari;Mikayla Morris;Daniel Gage;Leslie Shor;Baikun Li
  • 通讯作者:
    Baikun Li

Leslie Shor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leslie Shor', 18)}}的其他基金

EFRI E3P: Engineering Suspension Feeder Systems for Separation and Elimination of Microplastics from Water
EFRI E3P:用于分离和消除水中微塑料的工程悬浮给料系统
  • 批准号:
    2029428
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Root-Targeted Delivery of Encapsulated Agrochemicals using Natural Microbial Carriers
合作研究:SusChEM:利用天然微生物载体定向递送封装农用化学品
  • 批准号:
    1605624
  • 财政年份:
    2016
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
NUE ASCCEND: Addressing Social Challenges through Creativity, Engineering, Nanotechnology, and Diversity
NUE ASCCEND:通过创造力、工程、纳米技术和多样性应对社会挑战
  • 批准号:
    1242167
  • 财政年份:
    2012
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
  • 批准号:
    21506066
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 16万
  • 项目类别:
    Studentship
Field emission scanning electron microscope
场发射扫描电子显微镜
  • 批准号:
    532701230
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Major Research Instrumentation
Numerical simulations of lattice field theory
晶格场论的数值模拟
  • 批准号:
    2902259
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Studentship
Billiard Field Theory
台球场论
  • 批准号:
    EP/Y023005/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
  • 批准号:
    EP/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
  • 批准号:
    2349136
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了