Symposium on Biofabrication for Emulating Biological Tissues, Fall Materials Research Society National Meeting; Boston, Massachusetts; November 29 to December 4, 2020
模拟生物组织的生物制造研讨会,秋季材料研究学会全国会议;
基本信息
- 批准号:2031176
- 负责人:
- 金额:$ 0.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant provides funding to partially support about 10 undergraduate students, graduate students, postdocs, or under-represented, female, and junior faculty to attend and present at the symposium on “Biofabrication for Emulating Biological Tissues” at the Fall Materials Research Society National Meeting in Boston, Massachusetts, November 29 to December 4, 2020. The 2020 program is being expanded into a 4-day symposium that will be composed of 17-20 invited talks and approximately 60 contributed talks. One additional poster session will be held on Tuesday evening (December 2, 2020) and this will offer opportunities for investigators to present their research and engage with others on an individual and informal basis. This symposium aims to bring together interdisciplinary expertise spanning from materials science, physics, chemistry, engineering, biological sciences, and medicine from the academic, industrial, and government agency communities, who focus on the developments of advanced manufacturing technologies for the generation of human based tissue models for emulating their native counterparts. In addition, this symposium will provide a platform for communications of scientists and engineers working in the area and promote cross-fertilization of ideas and technologies encompassing these different disciplines. Most importantly, the symposium will facilitate opportunities for junior faculties, postdoctoral fellows, graduate students, and researchers from underrepresented groups to present research results in an interdisciplinary and dynamic international symposium. The organizing committee is strongly committed to recruiting and promoting women and minority students, postdocs, and faculty to attend the meeting.It is increasingly recognized that conventional and oversimplified cell culture strategies based on the planar, static formats cannot reproduce the function and complexity of biological tissues. Miniaturized biomimetic 3D tissue models fabricated using advanced materials and biomaterials, when interconnected together in a microfluidic circuit, can faithfully recapitulate the structure, biology, physiology, compartmentalization, and interconnectivity of human tissue and organ systems. These systems potentially enable accurate prediction of human responses towards pharmaceutical compounds, and facilitate high-content testing of nanomedicines, chemicals, and biological species. In the past decade, advances in materials science and microfluidics technologies have improved the capacity in the development of tissue models as simple and reproducible platforms that recapitulate tissue-level functions through incorporation of biological materials such as cells, their associated matrices, and microenvironmental cues. The utilization of fluids in micro-sized channels is cost-effective due to reductions in the quantity of cells, animals, and reagents required, making it further scalable. In a related way, rapid advancement in biofabrication technologies have enabled the creation of biomimetic microenvironments to emulate architectural fidelity, apply shear stress, strain, and/or interfaces on different biological materials. The advances in materials will continue to drive the field of in vitro tissue modeling by contributing to improved cell-instructive extracellular matrix cues, while biofabrication will enable improved 3D spatial control and dynamics required for the successful creation of the complex human tissue microenvironments. The symposium partially supported by this grant will cover interdisciplinary topics spanning from materials science, physics, chemistry, engineering, biological sciences, and medicine with an emphasis on advanced manufacturing technologies for generating microphysiological systems or organ-on-chip platforms, towards applications in both fundamental studies and translational research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该补助金提供资金,部分支持约10名本科生,研究生,博士后,或代表不足,女性和初级教师参加并出席在秋季材料研究学会全国会议在波士顿,马萨诸塞州,11月29日至2020年12月4日的“生物织物模拟生物组织”研讨会。2020年的计划将扩大为为期4天的研讨会,将由17-20个受邀演讲和大约60个贡献演讲组成。一个额外的海报会议将于周二晚上(2020年12月2日)举行,这将为研究人员提供机会,介绍他们的研究,并与其他人在个人和非正式的基础上参与。本次研讨会旨在汇集来自学术界、工业界和政府机构界的材料科学、物理学、化学、工程、生物科学和医学等跨学科专业知识,他们专注于先进制造技术的开发,以生成基于人体的组织模型,以模仿本土同行。此外,本次研讨会将为在该领域工作的科学家和工程师提供一个交流平台,并促进涵盖这些不同学科的思想和技术的相互交流。最重要的是,研讨会将促进初级学院,博士后研究员,研究生和来自代表性不足的群体的研究人员在跨学科和动态的国际研讨会上展示研究成果的机会。组委会坚定地致力于招募和促进妇女和少数民族学生,博士后,和教师参加会议。人们越来越认识到,传统的和过于简化的细胞培养策略的基础上的平面,静态格式不能重现的功能和复杂性的生物组织。使用先进材料和生物材料制造的微型仿生3D组织模型,当在微流体回路中互连在一起时,可以忠实地再现人体组织和器官系统的结构,生物学,生理学,区室化和互连性。这些系统可能能够准确预测人类对药物化合物的反应,并促进纳米药物,化学品和生物物种的高含量测试。在过去的十年中,材料科学和微流体技术的进步提高了组织模型开发的能力,作为简单和可重复的平台,通过掺入生物材料,如细胞,其相关基质和微环境线索,概括组织水平的功能。由于所需的细胞、动物和试剂的数量减少,在微尺寸通道中利用流体是成本有效的,使其进一步可扩展。以相关的方式,生物制造技术的快速发展已经使得能够创建仿生微环境以模仿建筑保真度,在不同的生物材料上施加剪切应力、应变和/或界面。材料的进步将继续推动体外组织建模领域,有助于改善细胞指导性细胞外基质线索,而生物织物将能够改善成功创建复杂人体组织微环境所需的3D空间控制和动力学。该研讨会部分由这笔赠款支持,将涵盖跨学科的主题,从材料科学,物理,化学,工程,生物科学和医学,重点是先进的制造技术,用于产生微生理系统或器官芯片平台,该奖项反映了NSF的法定使命,并被认为是值得支持的,使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Y Shrike Zhang其他文献
Y Shrike Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Y Shrike Zhang', 18)}}的其他基金
Collaborative Research: CPS: Medium: AI-Boosted Precision Medicine through Continual in situ Monitoring of Microtissue Behaviors on Organs-on-Chips
合作研究:CPS:中:通过持续原位监测器官芯片上的微组织行为,人工智能推动精准医疗
- 批准号:
2225698 - 财政年份:2022
- 资助金额:
$ 0.6万 - 项目类别:
Standard Grant
Collaborative Research: Transforming Cardiotoxic Drug Screening Using Bioprinted Myocardial Tissue Model with Self-Sensing Capacity
合作研究:利用具有自我感知能力的生物打印心肌组织模型改变心脏毒性药物筛选
- 批准号:
1936105 - 财政年份:2020
- 资助金额:
$ 0.6万 - 项目类别:
Standard Grant
相似海外基金
What's MEW in the UK? Engineering basement membranes using state-of-the-art biofabrication technologies
英国的MEW是什么?
- 批准号:
EP/Y001656/1 - 财政年份:2024
- 资助金额:
$ 0.6万 - 项目类别:
Research Grant
Regenerating the rotator cuff tendon-to-bone interface through biofabrication
通过生物制造再生肩袖肌腱与骨骼的界面
- 批准号:
2890262 - 财政年份:2023
- 资助金额:
$ 0.6万 - 项目类别:
Studentship
Next generation biofabrication system for bottom-up processing of novel sheet-like biomaterials into higher-order patient specific tissue structures
下一代生物制造系统,用于将新型片状生物材料自下而上加工成更高阶的患者特异性组织结构
- 批准号:
569315-2022 - 财政年份:2022
- 资助金额:
$ 0.6万 - 项目类别:
Postgraduate Scholarships - Doctoral
Trillion cell culture to fuel organ biofabrication
万亿细胞培养为器官生物制造提供燃料
- 批准号:
10473259 - 财政年份:2022
- 资助金额:
$ 0.6万 - 项目类别:
Biofabrication of New Composite Scaffolds for Bone Tissue Engineering Applications
用于骨组织工程应用的新型复合支架的生物制造
- 批准号:
RGPIN-2018-06826 - 财政年份:2022
- 资助金额:
$ 0.6万 - 项目类别:
Discovery Grants Program - Individual
Biofab Explorer: Designing A Dual Enrollment Pathway to Careers in Biofabrication
Biofab Explorer:设计生物制造职业的双重注册途径
- 批准号:
2202033 - 财政年份:2022
- 资助金额:
$ 0.6万 - 项目类别:
Standard Grant
Personalized Strategies for Periodontal Tissue Regeneration - A Converged Biofabrication Approach
牙周组织再生的个性化策略——融合生物制造方法
- 批准号:
10390983 - 财政年份:2022
- 资助金额:
$ 0.6万 - 项目类别:
Personalized Strategies for Periodontal Tissue Regeneration - A Converged Biofabrication Approach
牙周组织再生的个性化策略——融合生物制造方法
- 批准号:
10668946 - 财政年份:2022
- 资助金额:
$ 0.6万 - 项目类别:
Sound-Induced 3D Biofabrication and Morphogenesis
声诱导 3D 生物制造和形态发生
- 批准号:
RTI-2022-00539 - 财政年份:2022
- 资助金额:
$ 0.6万 - 项目类别:
Research Tools and Instruments
Biomimetic dense collagen gel bioinks for automated biofabrication and 3D bioprinting
用于自动化生物制造和 3D 生物打印的仿生致密胶原蛋白凝胶生物墨水
- 批准号:
RGPIN-2022-04364 - 财政年份:2022
- 资助金额:
$ 0.6万 - 项目类别:
Discovery Grants Program - Individual