RAPID: Data-Driven Models to Optimize Ventilator Therapy in ICU COVID Patients
RAPID:数据驱动模型优化 ICU 新冠患者的呼吸机治疗
基本信息
- 批准号:2031195
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The novel Coronavirus (COVID-19) is one of four infectious diseases caused by the SARS-CoV-2 virus. Although the clinical signs and patient symptoms of this complicated disease vary in presentation and severity, clinicians and investigators have reported constitutional symptoms (cough and fever), upper and lower respiratory tract symptoms, as well as gastrointestinal symptoms. Among the most concerning is the life threatening acute respiratory distress syndrome (ARDS) in patients. The pathophysiology of severe ARDS results from a rapid decline in pulmonary function and requires intubation of patients in critical condition for invasive mechanical ventilation to combat lung recruitability, reduced peripheral capillary oxygen saturation (SpO2) and risks of organ failure and death. Ventilator settings to increase SpO2 and oxygen delivery is achieved with positive end-expiratory pressure (PEEP). However, controlling ventilation at a high PEEP for extended periods of time significantly increases risk for ventilator-associated lung injury (VALI). This RAPID project will develop novel engineering strategies for optimal ventilator control to maximize SpO2 in minimal time, while minimizing PEEP and the duration of ventilator use are needed to minimize VALI and subsequent complications, and to improve favorable patient outcomes. In the management of patients with COVID-19, these strategies are significant to optimize oxygen delivery, minimal invasive ventilator use and mechanical lung injury. Further, the understanding of ventilator requirements and operative settings highlights the need for available ventilators. The management of severe ARDS is complicated and strategies and protocols are desperately needed.To achieve this goal, we will develop data-driven linear parameter-varying (LPV) dynamical systems models that relate patient clinical state and ventilator inputs to the output variable patient SpO2. Patient state will be characterized using data from the electronic health record (EHR) and minute-by-minute physiological time-series (PTS) data (e.g., heart rate, respiratory rate, SpO2) acquired from patient monitoring. We will first develop the LPV model using retrospective data from non-COVID-19 patients who are on ventilators to help treat conditions such as pneumonia and ARDS. Then, we will test the predictive capabilities of the LPV model in COVID-19 patients who are placed on ventilators. Finally, we will develop an optimal ventilator control strategy for COVID-19 patients to regulate SpO2 levels in ICU patients based on the LPV model. Attempting to control a complex biological system using control strategies based on mechanistic models is generally intractable. However, the LPV framework allows for sophisticated optimal strategies to be implemented that not only allow for better performance than other classical methods, but also provides stability and performance guarantees.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新型冠状病毒(COVID-19)是由SARS-CoV-2病毒引起的四种传染病之一。尽管这种复杂疾病的临床体征和患者症状在表现和严重程度上各不相同,但临床医生和研究人员报告了全身症状(咳嗽和发热)、上呼吸道和下呼吸道症状以及胃肠道症状。其中最令人关注的是危及患者生命的急性呼吸窘迫综合征(ARDS)。严重ARDS的病理生理学是由于肺功能快速下降,需要对危重患者进行插管,进行有创机械通气,以对抗肺复张性、外周毛细血管氧饱和度(SpO 2)降低以及器官衰竭和死亡风险。通过呼气末正压(PEEP)实现增加SpO 2和氧气输送的呼吸机设置。然而,长时间在高PEEP下控制通气会显著增加呼吸机相关性肺损伤(VALI)的风险。该RAPID项目将开发新型工程策略,用于优化呼吸机控制,以在最短时间内最大限度地提高SpO 2,同时最大限度地减少PEEP和呼吸机使用持续时间,以最大限度地减少VALI和后续并发症,并改善有利的患者结局。在COVID-19患者的管理中,这些策略对于优化氧气输送、微创呼吸机使用和机械性肺损伤具有重要意义。此外,对呼吸机要求和手术设置的理解强调了对可用呼吸机的需求。严重ARDS的管理是复杂的,策略和协议是迫切需要的。为了实现这一目标,我们将开发数据驱动的线性参数变化(LPV)动力系统模型,将患者的临床状态和呼吸机输入到输出变量患者SpO 2。将使用来自电子健康记录(EHR)的数据和逐分钟生理时间序列(PTS)数据(例如,心率、呼吸率、SpO 2)。我们将首先使用非COVID-19患者的回顾性数据开发LPV模型,这些患者使用呼吸机帮助治疗肺炎和ARDS等疾病。然后,我们将测试LPV模型在使用呼吸机的COVID-19患者中的预测能力。最后,我们将根据LPV模型为COVID-19患者制定最佳呼吸机控制策略,以调节ICU患者的SpO 2水平。试图使用基于机械模型的控制策略来控制复杂的生物系统通常是棘手的。然而,LPV框架允许实施复杂的优化策略,不仅比其他经典方法具有更好的性能,而且还提供稳定性和性能保证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Early Prediction of Multiple Organ Dysfunction in the Pediatric Intensive Care Unit.
- DOI:10.3389/fped.2021.711104
- 发表时间:2021
- 期刊:
- 影响因子:2.6
- 作者:Bose SN;Greenstein JL;Fackler JC;Sarma SV;Winslow RL;Bembea MM
- 通讯作者:Bembea MM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sridevi Sarma其他文献
164. Linking Demographics, Geographics, and Social Media to Depression in College Students
164. 将人口统计学、地理学和社交媒体与大学生的抑郁症联系起来
- DOI:
10.1016/j.biopsych.2025.02.401 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.000
- 作者:
Nisa Naik;Cailyn Chien;Sridevi Sarma - 通讯作者:
Sridevi Sarma
Sridevi Sarma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sridevi Sarma', 18)}}的其他基金
A Modeling and Control Framework for Early Detection of Adverse Clinical States
用于早期检测不良临床状态的建模和控制框架
- 批准号:
1609038 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EFRI-M3C: Robust Decoder-Compensator Architecture for Interactive Control of High-Speed and Loaded Movements
EFRI-M3C:用于高速和负载运动交互控制的稳健解码器补偿器架构
- 批准号:
1137237 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PECASE: Modeling and Control of Neuronal Networks
PECASE:神经元网络的建模和控制
- 批准号:
1055560 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SBIR Phase I: Knowledge Modeling for Data Driven Optimization Based Strategic Promotion Design
SBIR 第一阶段:基于数据驱动优化的战略促销设计的知识建模
- 批准号:
0441316 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4: NSF: Obtaining Data Science Expertise to Enable Rapid Data Driven Material Discovery
RII Track-4:NSF:获得数据科学专业知识以实现快速数据驱动的材料发现
- 批准号:
2229686 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: DRL AI: Data Driven Approaches to Integrating AI in K-12 Education Using Social Media Analysis
RAPID:DRL AI:利用社交媒体分析将 AI 集成到 K-12 教育中的数据驱动方法
- 批准号:
2332306 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: Data-driven Understanding of Imperfect Protection for Long-term COVID-19 Projections
RAPID:数据驱动的对长期 COVID-19 预测不完美保护的理解
- 批准号:
2223933 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: A Cross-Infrastructure Data-driven Approach to Modeling and Simulation of the 2021 Texas Power Outage
RAPID:跨基础设施数据驱动的 2021 年德克萨斯州停电建模和仿真方法
- 批准号:
2130945 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Statistical methods in rapid surveillance system for data driven policy making under COVID-19 pandemic
COVID-19大流行下数据驱动决策的快速监测系统统计方法
- 批准号:
21K17292 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Mitigation and Suppression of Coronavirus Pandemic with Data-driven RAPID Decisions Using COVID-19 Simulator
RAPID:协作研究:使用 COVID-19 模拟器通过数据驱动的 RAPID 决策缓解和抑制冠状病毒大流行
- 批准号:
2035360 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: Data-driven Multiscale Integrative Model of the Coronavirus Virion
RAPID:数据驱动的冠状病毒病毒体多尺度综合模型
- 批准号:
2029092 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track D: Rapid Development of Intelligent, Built Environment Geo-Databases Using AI and Data-Driven Models
NSF 融合加速器轨道 D:使用人工智能和数据驱动模型快速开发智能构建环境地理数据库
- 批准号:
2040735 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: Networked Data-Driven Modelling of the COVID-19 Outbreak with a Performativity-Aware Calibration Learning Algorithm
RAPID:使用性能感知校准学习算法对 COVID-19 爆发进行网络数据驱动建模
- 批准号:
2028401 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Data driven approach to identifying building retrofit pathways in the context of rapid energy system decarbonisation
在能源系统快速脱碳背景下确定建筑改造路径的数据驱动方法
- 批准号:
2423643 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Studentship