Improved Understanding of the Moist Dynamics of the Extratropical Storm Tracks and Their Response to Climate Change

更好地了解温带风暴路径的潮湿动力学及其对气候变化的响应

基本信息

  • 批准号:
    2031472
  • 负责人:
  • 金额:
    $ 44.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

At a fundamental level the frontal weather systems we see on maps can be explained by the theory of baroclinic instability, in which small disturbances grow by extracting energy from the temperature contrast between the warm tropics and the cold poles. The theory works but it neglects the enormous heat release that occurs when water vapor condenses to form clouds and precipitation. It is reasonable to assume that condensational heating is destabilizing but our understanding of its effects on the growth rate, propagation speed, precipitation intensity, and other aspects of weather systems is quite limited. The role of condensational heating is a practical concern as the amount of water vapor in the atmosphere increases with temperature, thus one might expect more intense precipitation and stronger storms as climate warms.Work under this award seeks to develop a theoretical basis for the effects of condensational heating on baroclinic instability and the dependence of these effects on global temperature. One target of the study is diabatic Rossby vortices (DRVs, also called diabatic Rossby waves), which are relatively small-scale weather systems fueled by condensational heating which propagate quickly and can intensify rapidly into powerful storms. DRVs were first identified in simplified model simulations but have now been implicated in the development of severe storms like winter storm Lothar in 1999, among the most destructive to hit western Europe in several decades. A more theoretical concern is the effect of condensational heating on the most unstable baroclinic mode, meaning the pattern of troughs and ridges that grows most rapidly for a given middle-latitude temperature contrast and its accompanying upper-level jet stream. Earlier work by the Principal Investigator and others shows that condensational heating causes the regions of upward motion in the mode to contract and become more intense relative to the regions of downward motion. The narrowing and intensification of the updraft regions is important as it increases the likelihood of extreme precipitation.The work has societal relevance due to its focus on the strength of weather systems, the intensity of precipitation they generate, and the extent to which warmer temperatures lead to more destructive storms. The project also provides support and training to a graduate student, thereby contributing to the future workforce in this research area. In addition, the Principal Investigator serves as a faculty mentor in the MIT Summer Research Program, which seeks to increase the engagement of undergraduate students from underserved minority groups in science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在基本层面上,我们在地图上看到的额叶天气系统可以用斜压不稳定性理论来解释,在这种理论中,小干扰通过从温暖的热带和冷杆之间的温度对比中提取能量来生长。该理论起作用,但它忽略了水蒸气凝结形成云和降水时发生的巨大热量释放。 可以合理地假设凝聚力加热是不稳定的,但是我们对其对天气系统的生长速度,繁殖速度,降水强度和其他方面的影响的理解非常有限。凝结加热的作用是一个实际问题,因为大气中的水蒸气量随温度的增加而增加,因此,随着气候温暖,人们可能会期望更强烈的降水量和更强烈的暴风雨。在该奖项下,工作旨在为凝聚力加热对Baroclinic不稳定性的影响和对全球温度的影响而产生理论基础。该研究的一个目标是绝热的rossby涡流(DRV,也称为绝生Rossby Wave),它们是相对较小的天气系统,其由凝聚的加热燃料加油,可以迅速传播,并可以迅速加强到强大的风暴中。 DRV首先在简化的模型模拟中确定,但现在与1999年冬季风暴洛萨(Winter Storm Lothar)这样的严重风暴的发展牵涉,这是几十年来最受袭击的西欧。 一个理论上的关注点是冷凝性加热对最不稳定的斜压模式的影响,这意味着在给定的中纬度温度对比度及其伴随的上层喷射流的槽和山脊模式。 首席研究人员和其他研究人员的早期工作表明,凝结加热会导致模式下的向上运动区域收缩,并相对于向下运动的区域变得更加强烈。 上升气流区域的狭窄和强化很重要,因为它增加了极端降水的可能性。由于其专注于天气系统的强度,它们产生的降水量以及更高的温度导致更具破坏性的风暴,因此该工作具有社会相关性。 该项目还向研究生提供支持和培训,从而为该研究领域的未来劳动力做出了贡献。 此外,首席研究员是麻省理工学院夏季研究计划的教师导师,该计划旨在增加科学和工程领域服务不足的少数群体的本科生的参与。该奖项反映了NSF的法定任务,并被认为是通过使用该基金会的知识分子和更广泛影响的评估来评估CRITERIA的评估。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Diabatic Rossby Vortex: Growth Rate, Length Scale, and the Wave–Vortex Transition
非绝热罗斯贝涡旋:增长率、长度尺度和波涡跃迁
  • DOI:
    10.1175/jas-d-22-0022.1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Kohl, Matthieu;O’Gorman, Paul A.
  • 通讯作者:
    O’Gorman, Paul A.
Impact of precipitation mass sinks on midlatitude storms in idealized simulations across a wide range of climates
在各种气候的理想模拟中,降水质量沉降对中纬度风暴的影响
  • DOI:
    10.5194/wcd-5-17-2024
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abbott, Tristan H.;O'Gorman, Paul A.
  • 通讯作者:
    O'Gorman, Paul A.
Asymmetry of the Distribution of Vertical Velocities of the Extratropical Atmosphere in Theory, Models, and Reanalysis
温带大气垂直速度分布的不对称性理论、模型和再分析
  • DOI:
    10.1175/jas-d-23-0128.1
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Kohl, Matthieu;O’Gorman, Paul A.
  • 通讯作者:
    O’Gorman, Paul A.
Moist available potential energy of the mean state of the atmosphere and the thermodynamic potential for warm conveyor belts and convection
大气平均状态的湿可用势能以及温暖传送带和对流的热力学势
  • DOI:
    10.5194/wcd-4-361-2023
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gertler, Charles G.;O'Gorman, Paul A.;Pfahl, Stephan
  • 通讯作者:
    Pfahl, Stephan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul O'Gorman其他文献

Paul O'Gorman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul O'Gorman', 18)}}的其他基金

Improved Understanding of Changes in Convective Available Potential Energy and Links to the Large-scale Circulation
更好地了解对流可用势能的变化以及与大规模环流的联系
  • 批准号:
    1749986
  • 财政年份:
    2018
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Data: Toward Exascale Community Ocean Circulation Modeling
合作研究:框架:数据:迈向百万兆亿级社区海洋环流建模
  • 批准号:
    1835618
  • 财政年份:
    2018
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Improved Understanding of the Response of Mean and Extreme Precipitation to Climate Change
更好地了解平均降水量和极端降水量对气候变化的响应
  • 批准号:
    1552195
  • 财政年份:
    2016
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Improved Understanding of Moist Atmospheric Circulations Through an Effective Static Stability Framework
通过有效的静态稳定性框架加深对潮湿大气环流的理解
  • 批准号:
    1148594
  • 财政年份:
    2012
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant

相似国自然基金

基于场景理解的全景视频智能压缩关键技术研究
  • 批准号:
    62371310
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
典型热带生态系统大气零价汞源汇格局变化及机理解析
  • 批准号:
    42377255
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
  • 批准号:
    62306239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SlCNR8调控番茄植株衰老的机理解析
  • 批准号:
    32360766
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Understanding How Moist Processes Shape Tropical Motions in Observations and General Circulation Models
职业:了解潮湿过程如何在观测和大气环流模型中塑造热带运动
  • 批准号:
    2236433
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
HBCU-Excellence in Research: Understanding Atmospheric Moist Convection and Organization Using Automatic Feature Identification and Tracking
HBCU-卓越研究:使用自动特征识别和跟踪了解大气潮湿对流和组织
  • 批准号:
    1832121
  • 财政年份:
    2018
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
CoDyPhy: Improved Coupling of Dynamics and Physics for understanding and modelling moist convection
CoDyPhy:改进动力学和物理耦合,用于理解和建模湿对流
  • 批准号:
    NE/N013123/1
  • 财政年份:
    2016
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Research Grant
Development of a novel method for desalination of iron artifacts by means of vapor diffusion and transfer
开发一种通过蒸汽扩散和转移对铁制品进行脱盐的新方法
  • 批准号:
    15K16278
  • 财政年份:
    2015
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of evaluation system of environmental action for precise prediction of long-term serviceability of concrete structures
开发精确预测混凝土结构长期使用性的环境作用评价系统
  • 批准号:
    25289131
  • 财政年份:
    2013
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了