RAPID: Advanced Topic Modeling Methods to Analyze Text Responses in COVID-19 Survey Data

RAPID:用于分析 COVID-19 调查数据中文本响应的高级主题建模方法

基本信息

  • 批准号:
    2031736
  • 负责人:
  • 金额:
    $ 17.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-15 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

As the COVID-19 pandemic continues, public and private organizations are deploying surveys to inform responses and policy choices. Survey designs using multiple choice responses are by far the most common -- "open ended" questions, where survey participants provide a longer-form written response, are used far less. This is true despite the fact that when you allow people to provide unconstrained spoken or text responses, it is possible to obtain richer, fine-grained information clarifying the other responses, as well as useful “bottom up” information that the survey designers did not know to ask for. A key problem is that analyzing the unstructured language in open-ended responses is a labor-intensive process, creating obstacles to using them especially when speedy analysis is needed and resources are limited. Computational methods can help, but they often fail to provide coherent, interpretable categories, or they can fail to do a good job connecting the text in the survey with the closed-end responses. This project will develop new computational methods for fast and effective analysis of survey data that includes text responses, and it will apply these methods to support organizations doing high-impact survey work related to COVID-19 response. This will improve these organizations’ ability to understand and mitigate the impact of the COVID-19 pandemic.This project’s technical approach builds on recent techniques bringing together deep learning and Bayesian topic models. Several key technical innovations will be introduced that are specifically geared toward improving the quality of information available in surveys that include both closed- and open-ended responses. A common element in these approaches is the extension of methods commonly used in supervised learning settings, such as task-based fine-tuning of embeddings and knowledge distillation, to unsupervised topic modeling, with a specific focus on producing diverse, human-interpretable topic categories that are well aligned with discrete attributes such as demographic characteristics, closed-end responses, and experimental condition. Project activities include assisting in the analysis of organizations' survey data, conducting independent surveys aligned with their needs to obtain additional relevant data, and the public release of a clean, easy to use computational toolkit facilitating more widespread adoption of these new methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着COVID-19大流行的持续,公共和私人组织正在部署调查,以了解应对措施和政策选择。到目前为止,使用多项选择回答的调查设计是最常见的--“开放式”问题,即调查参与者提供较长形式的书面回答,使用得少得多。尽管当你允许人们提供不受约束的口头或文本回答时,有可能获得更丰富,更细粒度的信息来澄清其他回答,以及调查设计者不知道要问的有用的“自下而上”的信息。 一个关键问题是,分析开放式响应中的非结构化语言是一个劳动密集型过程,这给使用它们造成了障碍,特别是在需要快速分析和资源有限的情况下。计算方法可以提供帮助,但它们通常无法提供连贯的、可解释的类别,或者它们无法很好地将调查中的文本与封闭式回答联系起来。该项目将开发新的计算方法,以快速有效地分析包括文本回复在内的调查数据,并将这些方法应用于支持组织开展与COVID-19应对相关的高影响力调查工作。 这将提高这些组织理解和减轻COVID-19大流行影响的能力。该项目的技术方法建立在将深度学习和贝叶斯主题模型结合在一起的最新技术之上。将采用几项关键的技术创新,专门用于提高包括封闭式和开放式答复的调查中所提供信息的质量。这些方法中的一个共同点是将监督学习环境中常用的方法(例如基于任务的嵌入和知识蒸馏微调)扩展到无监督主题建模,特别关注产生多样化的,人类可解释的主题类别,这些类别与离散属性(例如人口统计特征,封闭式响应和实验条件)保持一致。项目活动包括协助分析各组织的调查数据,根据其需要进行独立调查,以获得更多的相关数据,易于使用的计算工具包,促进了这些新方法的更广泛采用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Is Automated Topic Model Evaluation Broken?: The Incoherence of Coherence
  • DOI:
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Miserlis Hoyle;Pranav Goel;Denis Peskov;Andrew Hian-Cheong;Jordan L. Boyd-Graber;P. Resnik
  • 通讯作者:
    Alexander Miserlis Hoyle;Pranav Goel;Denis Peskov;Andrew Hian-Cheong;Jordan L. Boyd-Graber;P. Resnik
Improving Neural Topic Models Using Knowledge Distillation
  • DOI:
    10.18653/v1/2020.emnlp-main.137
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Miserlis Hoyle;Pranav Goel;P. Resnik
  • 通讯作者:
    Alexander Miserlis Hoyle;Pranav Goel;P. Resnik
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Resnik其他文献

A multi-modal approach for identifying schizophrenia using cross-modal attention
使用跨模式注意力识别精神分裂症的多模式方法
  • DOI:
    10.48550/arxiv.2309.15136
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gowtham Premananth;Yashish M. Siriwardena;Philip Resnik;Carol Y. Espy
  • 通讯作者:
    Carol Y. Espy
Computationally Scalable and Clinically Sound: Laying the Groundwork to Use Machine Learning Techniques for Social Media and Language Data in Predicting Psychiatric Symptoms
  • DOI:
    10.1016/j.biopsych.2022.02.146
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Deanna Kelly;Glen Coppersmith;John Dickerson;Carol Espy-Wilson;Hanna Michel;Philip Resnik
  • 通讯作者:
    Philip Resnik
Using Intrinsic and Extrinsic Metrics to Evaluate Accuracy and Facilitation in Computer-assisted Coding
使用内在和外在指标来评估计算机辅助编码的准确性和便利性
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philip Resnik;Michael Niv;Michael Nossal;Gregory Schnitzer;Jean Stoner;Andrew Kapit;Richard Toren
  • 通讯作者:
    Richard Toren
A Psycholinguistics-Inspired Method to Counter IP Theft using Fake Documents
一种受心理语言学启发的方法,利用虚假文档来打击知识产权盗窃
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Natalia Denisenko;Youzhi Zhang;Chiara Pulice;Shohini Bhattasali;Sushil Jajodia;Philip Resnik;V. S. Subrahmanian
  • 通讯作者:
    V. S. Subrahmanian
Making the Implicit Explicit: Implicit Content as a First Class Citizen in NLP
使隐式变得显式:作为 NLP 中的一等公民的隐式内容
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Miserlis Hoyle;Rupak Sarkar;Pranav Goel;Philip Resnik
  • 通讯作者:
    Philip Resnik

Philip Resnik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Resnik', 18)}}的其他基金

RI: Small: Modeling Co-Decisions: A Computational Framework Using Language and Metadata
RI:小型:共同决策建模:使用语言和元数据的计算框架
  • 批准号:
    2008761
  • 财政年份:
    2020
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: Data Driven, Computational Models for Discovery and Analysis of Framing
SoCS:协作研究:用于框架发现和分析的数据驱动计算模型
  • 批准号:
    1211153
  • 财政年份:
    2012
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
SGER: Exploiting Alternative Packagings of Source Meaning in Statistical Machine Translation
SGER:在统计机器翻译中利用源含义的替代包装
  • 批准号:
    0838801
  • 财政年份:
    2008
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Continuing Grant
Collaborative Proposal-Using the Web as a Corpus for Empirical Linguistic Research
协作提案-使用网络作为实证语言学研究的语料库
  • 批准号:
    0113641
  • 财政年份:
    2001
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant
Workshop: Student Research in Computational Linguistics, at the ACL'2000 Conference
研讨会:计算语言学学生研究,ACL2000 会议
  • 批准号:
    0097529
  • 财政年份:
    2000
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Standard Grant

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

In-Touch: Implementation of a person-centered palliative care iNtervention To imprOve comfort, QUality of Life and social engagement of people with advanced dementia in Care Homes
In-Touch:实施以人为本的姑息治疗干预措施,以提高护理院中晚期痴呆症患者的舒适度、生活质量和社会参与度
  • 批准号:
    10102690
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    EU-Funded
Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
  • 批准号:
    10110390
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    EU-Funded
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
  • 批准号:
    10071797
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Collaborative R&D
Advanced Aeroponics 2: Value engineering to unlock 3x ROI in horticulture
Advanced Aeroponics 2:价值工程可实现园艺领域 3 倍的投资回报率
  • 批准号:
    10089184
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Collaborative R&D
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
  • 批准号:
    10089539
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Collaborative R&D
Advanced HR-ICP-MS facility for marine, Antarctic and environmental samples
用于海洋、南极和环境样品的先进 HR-ICP-MS 设施
  • 批准号:
    LE240100039
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Zwitterion-based electrolytes for advanced energy technologies
用于先进能源技术的两性离子电解质
  • 批准号:
    DP240101407
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Discovery Projects
Mem-Fast Membranes as Enablers for Future Biorefineries: from Fabrication to Advanced Separation Technologies
Mem-Fast 膜作为未来生物精炼的推动者:从制造到先进的分离技术
  • 批准号:
    EP/Y032004/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Research Grant
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.68万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了