RII Track-4: Data-Driven Navigation, Path Planning, and Coordination of Mobile Robots in Fluids

RII Track-4:数据驱动的导航、路径规划和流体中移动机器人的协调

基本信息

  • 批准号:
    2032522
  • 负责人:
  • 金额:
    $ 18.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Autonomous mobile robots, such as unmanned aerial and underwater vehicles, are becoming an essential element in an increasing number of applications that serve the national interest. These intelligent platforms can provide critical in-situ measurement data for weather forecasting and persistent monitoring of the forming and developing of large-scale dynamic events. The capabilities to navigate and sense dynamic fluid environments are fundamental to miniature mobile robots in strong geophysical flows such as hurricanes or ocean currents. These capabilities require the robots to sense, explore, and understand background flow dynamics that are often not amenable to empirical models based on first principles, challenging the existing approaches for robot autonomy. This project aims at enhancing the navigation, path planning, and coordination of mobile robots in dynamic fluid environments by using data-driven system dynamics modeling, estimation, and control. The goals of this fellowship project are to straighten the PI’s robotics research program with intensive training on data-driven dynamics modeling and control techniques at the University of Washington, and bring long-term sustained improvements to the research and education capacity of the University of Hawai‘i system on data science and robotics. This project advances robot navigation, path planning, and coordination in fluid environments, which are fundamental for global ocean sensing and weather forecasting. The proposed research contributes to the foundation of robot autonomy by combing physics-informed, data-driven modeling with classical control and estimation based on first principles. The research objectives are to (1) build the theoretical foundation for fluid-based simultaneous localization and mapping using probabilistic inference, dynamic compressed sensing, and sparse identification of nonlinear dynamics, (2) uncover the connection between finite-horizon optimal trajectories in unsteady flow fields and the underlying coherent flow structures using model predictive control, and (3) identify the optimal swarming laws and emergent swarm dynamics in unsteady fluids using data-driven dynamics learning. The training and synergistic objectives are to establish a mutual student co-advising relationship, develop a new undergraduate course on “Data Science for Engineers” for the University of Hawai‘i, and initiate new collaborations with the eScience Institute and the Applied Physics Laboratory at the University of Washington. The expected outcomes include but are not limited to long-lasting collaborations between the PI and the host, joint journal publications, lightboard lecture videos series for the new course, and strategic plans for co-developing an open-access marine robotics testbed in Hawai‘i. The project impact will be sustained through joint publications, collaborative proposal development, student co-advising, and collaborations between the University of Hawai‘i and the University of Washington on data science research and education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自主移动机器人,如无人驾驶的空中和水下机器人,正在成为越来越多服务于国家利益的应用的基本要素。这些智能平台可以为天气预报和持续监测大范围动态事件的形成和发展提供关键的现场测量数据。导航和感知动态流体环境的能力是微型移动机器人在飓风或洋流等强烈地球物理流动中的基础。这些能力要求机器人感知、探索和理解背景流动态,而这些背景流动态往往不符合基于第一性原理的经验模型,对现有的机器人自主方法提出了挑战。该项目旨在通过使用数据驱动的系统动力学建模、估计和控制来增强移动机器人在动态流体环境中的导航、路径规划和协调。该奖学金项目的目标是通过在华盛顿大学进行数据驱动动力学建模和控制技术的强化培训,理顺PI的机器人研究计划,并为夏威夷大学数据科学和机器人系统的研究和教育能力带来长期持续的改善。该项目推进了机器人导航、路径规划和在流动环境中的协调,这些都是全球海洋传感和天气预报的基础。该研究将物理信息、数据驱动的建模与经典的基于第一性原理的控制和估计相结合,为机器人自主性的研究奠定了基础。研究目标是:(1)利用概率推理、动态压缩传感和非线性动力学稀疏辨识,为基于流体的同时定位和测绘奠定理论基础;(2)利用模型预测控制,揭示非定常流场中有限水平最优轨迹与基本相干流动结构之间的联系;(3)利用数据驱动动力学学习,识别非定常流体中的最优蜂群规律和涌现的蜂群动力学。培训和协同的目标是建立相互的学生共同咨询关系,为夏威夷大学开发一门新的本科课程,即“面向工程师的数据科学”,并启动与电子科学研究所和华盛顿大学应用物理实验室的新合作。预期的结果包括但不限于国际和平协会和东道主之间的长期合作、联合期刊出版物、新课程的灯板讲座视频系列,以及共同开发夏威夷开放访问海洋机器人试验台的战略计划。该项目的影响将通过联合出版物、协作提案开发、学生共同建议以及夏威夷大学和华盛顿大学在数据科学研究和教育方面的合作来持续。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Path Planning for Optimal Coverage of Areas with Nonuniform Importance
  • DOI:
    10.2514/6.2022-2546
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gregory F. Snyder;Sachin Shriwastav;Dylan Morrison-Fogel;Zhuoyuan Song
  • 通讯作者:
    Gregory F. Snyder;Sachin Shriwastav;Dylan Morrison-Fogel;Zhuoyuan Song
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhuoyuan Song其他文献

An infrared dataset for partially occluded person detection in complex environment for search and rescue
一个用于复杂环境中搜索和救援的部分遮挡人员检测的红外数据集
  • DOI:
    10.1038/s41597-025-04600-0
  • 发表时间:
    2025-02-19
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Zhuoyuan Song;Yili Yan;Yixin Cao;Shengzhi Jin;Fugui Qi;Zhao Li;Tao Lei;Lei Chen;Yu Jing;Juanjuan Xia;Xiangyang Liang;Guohua Lu
  • 通讯作者:
    Guohua Lu
Fast Autonomous Underwater Exploration using a Hybrid Focus Model with Semantic Representation
使用具有语义表示的混合聚焦模型进行快速自主水下探索
  • DOI:
    10.23919/oceans40490.2019.8962671
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Curran Meek;Zhuoyuan Song
  • 通讯作者:
    Zhuoyuan Song
Regulation of the surface morphology of CoNiSesub2/sub by magnetron sputtering of Au nanoparticles for the property-promotion of electrode materials for high-performance supercapacitors
通过磁控溅射金纳米粒子调控 CoNiSe₂ 表面形貌以促进高性能超级电容器电极材料性能
  • DOI:
    10.1016/j.jallcom.2025.181452
  • 发表时间:
    2025-07-05
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Mi Xiao;Zhuoyuan Song;Xiaofan Gao;Songyi Yang;Xinyu Hui;Xinyue Du;Wei Yao;Haotian Duan
  • 通讯作者:
    Haotian Duan
A Compact Autonomous Underwater Vehicle With Cephalopod-Inspired Propulsion
具有受头足类启发的推进力的紧凑型自主水下航行器
  • DOI:
    10.4031/mtsj.50.5.9
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Zhuoyuan Song;Cameron Mazzola;E. Schwartz;Rui Chen;Julian Finlaw;M. Krieg;K. Mohseni
  • 通讯作者:
    K. Mohseni
Construction of NiCo2S4 wrapped CeO2/Co3O4 nanorod arrays for excellent performance supercapacitors
用于高性能超级电容器的 NiCo2S4 包裹 CeO2/Co3O4 纳米棒阵列的构建
  • DOI:
    10.1007/s10008-024-06121-z
  • 发表时间:
    2024-10-24
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Mi Xiao;Xinyu Hui;Songyi Yang;Xinyue Du;Xiaofan Gao;Zhuoyuan Song;Weixi Zhang;Meng Xiao
  • 通讯作者:
    Meng Xiao

Zhuoyuan Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhuoyuan Song', 18)}}的其他基金

NRI: FND: Collaborative Navigation, Learning, and Collaboration in Fluids with Application to Ubiquitous Marine Co-Robots
NRI:FND:流体中的协作导航、学习和协作及其在无处不在的海洋协作机器人中的应用
  • 批准号:
    2024928
  • 财政年份:
    2020
  • 资助金额:
    $ 18.53万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 18.53万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 18.53万
  • 项目类别:
    Standard Grant
RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data
RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导
  • 批准号:
    2327379
  • 财政年份:
    2024
  • 资助金额:
    $ 18.53万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Methane Dynamics Described Through the Fusion of Site and Satellite Data in Bottomland Hardwood Forested and Non-forested Wetlands
RII Track-4:@NASA:通过融合洼地硬木森林和非森林湿地的现场和卫星数据描述甲烷动力学
  • 批准号:
    2327374
  • 财政年份:
    2024
  • 资助金额:
    $ 18.53万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
  • 批准号:
    2327456
  • 财政年份:
    2024
  • 资助金额:
    $ 18.53万
  • 项目类别:
    Standard Grant
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
  • 批准号:
    2316400
  • 财政年份:
    2023
  • 资助金额:
    $ 18.53万
  • 项目类别:
    Cooperative Agreement
RII Track-1: Harnessing the Data Revolution for Vermont: The Science of Online Corpora, Knowledge, and Stories (SOCKS)
RII Track-1:利用佛蒙特州的数据革命:在线语料库、知识和故事的科学 (SOCKS)
  • 批准号:
    2242829
  • 财政年份:
    2023
  • 资助金额:
    $ 18.53万
  • 项目类别:
    Cooperative Agreement
RII Track-4: NSF: Obtaining Data Science Expertise to Enable Rapid Data Driven Material Discovery
RII Track-4:NSF:获得数据科学专业知识以实现快速数据驱动的材料发现
  • 批准号:
    2229686
  • 财政年份:
    2023
  • 资助金额:
    $ 18.53万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Data-driven Computational and Machine Learning Assessment of Structure-Toxicity Relationship of Micro/NanoPlastics
RII Track-4:NSF:微/纳米塑料结构-毒性关系的数据驱动计算和机器学习评估
  • 批准号:
    2229755
  • 财政年份:
    2023
  • 资助金额:
    $ 18.53万
  • 项目类别:
    Standard Grant
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
  • 批准号:
    2316402
  • 财政年份:
    2023
  • 资助金额:
    $ 18.53万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了