EAGER: Mesoscopic modeling of complex chemical-physical processes at interfaces

EAGER:界面处复杂化学物理过程的介观建模

基本信息

  • 批准号:
    2034154
  • 负责人:
  • 金额:
    $ 15.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

In many engineering systems, the physics and chemistry occurring at interfaces in a component are critical to the system’s performance, such as the electrochemical reactions in batteries, cavitation in fuel injectors, pumps and blood vessels, or reactions in chemical reactors. Understanding the physical phenomena and interactions between phases at the interfacial level is critical to designing more efficient systems and new technologies, such as high energy density batteries and drug delivery methods. With computational methods, we can visualize the physical nature of interfaces, making it well positioned to study interfacial processes and to isolate critical phenomena to better understand the chemical-physical driving forces within a system. Additionally, modeling can complement experimental work on elucidating the fundamental chemical-physical processes at the core of many complex engineering systems. For instance, in battery electrodes, optimal performance requires balancing the surface area available for reactions, the pore space available for transport of reactive species, and the connectivity of the solid electrode for charge transport. Neglecting any of these critical phenomena reduces battery performance. This study focuses on developing the computational methods needed to resolve chemical-physical processes at interfaces in the air electrode of high energy density lithium batteries. The project focuses on models that explicitly resolve the interfaces and surrounding regions within the complex porous geometry of the air electrode in a lithium-air battery. In this project, meso-scale model development will focus on modeling the air electrode of a lithium metal battery using smoothed particle hydrodynamics, a Lagrangian particle-based modeling method. The air electrode is a porous carbon-based material and the interfacial region where the air, electrolyte and electrode meet, is the site of the electrochemical reactions. During discharge, Li+ ions travel through the electrolyte to the air electrode where they react with oxygen. In an aprotic electrolyte design, the electrochemical reactions result in non-soluble lithium peroxide (Li2O2). The buildup of Li2O2 passivates the surface of the cathode and can lead to clogging of the pores. This limits the capacity of the battery over multiple charge/discharge cycles as the incomplete dissolution of Li2O2 decreases the capacity. The meso-scale model will focus on modeling the meso-scale behavior of the electrode to resolve the interfacial chemical-physical processes such as transport of species and charge to the reaction sites and the electrochemical reactions that produce Li2O2. The model will be used to investigate the meso-scale physics by explicitly resolving the interface and will study how the interplay between the electrode microstructure, electrolyte and reaction site concentration and locations affect electrode performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多工程系统中,发生在组件界面上的物理和化学对系统的性能至关重要,例如电池中的电化学反应、喷油器、泵和血管中的汽蚀,或者化学反应中的反应。在界面水平上了解物理现象和相之间的相互作用对于设计更有效的系统和新技术至关重要,例如高能量密度电池和药物输送方法。通过计算方法,我们可以可视化界面的物理性质,使其能够很好地研究界面过程并分离关键现象,以更好地了解系统中的化学-物理驱动力。此外,建模可以补充阐明许多复杂工程系统核心的基本化学-物理过程的实验工作。例如,在电池电极中,最佳性能需要平衡可用于反应的表面积、可用于传输活性物质的孔道空间以及用于电荷传输的固体电极的连接性。忽略任何这些关键现象都会降低电池性能。本研究致力于发展解决高能量密度锂电池空气电极界面化学物理过程所需的计算方法。该项目的重点是明确解决锂空气电池中空气电极复杂多孔性几何形状内的界面和周围区域的模型。在这个项目中,中尺度模型的开发将专注于使用平滑粒子流体力学(一种基于拉格朗日粒子的建模方法)对锂金属电池的空气电极进行建模。空气电极是一种多孔碳基材料,空气、电解液和电极的界面区域是电化学反应的场所。在放电过程中,锂离子通过电解液移动到空气电极,在那里它们与氧气反应。在非质子型电解液设计中,电化学反应生成不溶于水的过氧化锂(Li2O2)。Li2O2的积聚会使阴极表面钝化,并可能导致气孔堵塞。这限制了电池在多个充放电循环中的容量,因为Li2O2的不完全溶解降低了容量。介观模型将侧重于模拟电极的介观行为,以解决界面的化学-物理过程,如物种和电荷向反应位置的传输和产生Li2O2的电化学反应。该模型将通过显式分解界面来研究中尺度物理,并将研究电极微结构、电解液和反应现场浓度和位置之间的相互作用如何影响电极性能。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SPH simulation of diffusion and coupled concentration dependent ionic migration with precipitation and dissolution
扩散和耦合浓度依赖性离子迁移与沉淀和溶解的 SPH 模拟
Characterizing the Microstructure of Separators in Lithium Batteries and Their Effects on Dendritic Growth
  • DOI:
    10.1021/acsaem.1c00144
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Andrew Cannon;E. Ryan
  • 通讯作者:
    Andrew Cannon;E. Ryan
Interfacial studies on the effects of patterned anodes for guided lithium deposition in lithium metal batteries
图案化阳极对锂金属电池引导锂沉积影响的界面研究
  • DOI:
    10.1063/5.0073358
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Morey, Madison;Loftus, John;Cannon, Andrew;Ryan, Emily
  • 通讯作者:
    Ryan, Emily
Smoothed Particle Hydrodynamics Modeling of Electrodeposition and Dendritic Growth Under Migration- and Diffusion-Controlled Mass Transport
迁移和扩散控制的传质下电沉积和枝晶生长的平滑粒子流体动力学模型
Modeling the effects of pulse plating on dendrite growth in lithium metal batteries
模拟脉冲电镀对锂金属电池枝晶生长的影响
  • DOI:
    10.1016/j.electacta.2022.141227
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Melsheimer, Trevor;Morey, Madison;Cannon, Andrew;Ryan, Emily
  • 通讯作者:
    Ryan, Emily
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Ryan其他文献

The impact of gestational age on the development of Neonatal Abstinence Syndrome: A retrospective cohort study
  • DOI:
    10.1016/j.jogc.2023.03.080
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Emily Ryan;Victoria M. Allen;Sarah Brothers;Mary M. Brown;Christy G. Woolcott
  • 通讯作者:
    Christy G. Woolcott
Linking watershed disturbance with nearshore sedimentation and the shell beds of Lake Tanganyika (Mahale Mountains, Tanzania)
将流域扰动与近岸沉积和坦噶尼喀湖(坦桑尼亚马哈勒山脉)的贝壳床联系起来
  • DOI:
    10.1007/s12665-018-7644-7
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    J. Busch;M. Soreghan;K. Beurs;M. McGlue;I. Kimirei;A. Cohen;Emily Ryan
  • 通讯作者:
    Emily Ryan
High‐speed reflectance confocal microscopy of human skin at 1251–1342 nm
1251–1342 nm 人体皮肤高速反射共焦显微镜
  • DOI:
    10.1002/lsm.23652
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Jiheun Ryu;Dongkyun Kang;Junyoung Kim;Anita Chung;Catriona N. Grant;Emily Ryan;A. Barrios;Hany Osman;G. Tearney
  • 通讯作者:
    G. Tearney
A qualitative exploration into personal psychological agency in Instagram use
  • DOI:
    10.1016/j.chbr.2022.100196
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Emily Ryan;Conor Linehan
  • 通讯作者:
    Conor Linehan
Sa2019 TRANSNASAL IMAGE-GUIDED CYTOLOGY BRUSH FOR MINIMALLY INVASIVE SAMPLING OF UPPER GASTROINTESTINAL BIOMASS IN WOMEN OF REPRODUCTIVE AGE
  • DOI:
    10.1016/s0016-5085(24)01855-9
  • 发表时间:
    2024-05-18
  • 期刊:
  • 影响因子:
  • 作者:
    Evaggelia Gavgiotakis;Michael S. Walz;Peter Choy;Brandon S. McCorduck;Alissa Cirio;Carlos Pulido Escalante;Esmarline De Leon Peralta;Aditya Kumar;Anita Chung;Emily Ryan;Indira Balmasheva;Nitasha Bhat;Zachary D. Jansa;Catriona N. Grant;Guillermo Tearney
  • 通讯作者:
    Guillermo Tearney

Emily Ryan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Ryan', 18)}}的其他基金

NSF-BSF: Physical-Chemical Stabilization of Electrodeposition through Fundamental Interfacial Studies
NSF-BSF:通过基础界面研究实现电沉积的物理化学稳定性
  • 批准号:
    2310353
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Biorefinery for Pyrolysis Biofuels and Biotemplated Nanomaterials
合作研究:热解生物燃料和生物模板纳米材料的综合生物精炼厂
  • 批准号:
    1932922
  • 财政年份:
    2019
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
Systematic Design of Porous Heterogeneous Hierarchical Materials and Structures to Optimize Reactive Transport Processes
多孔异质分层材料和结构的系统设计以优化反应传输过程
  • 批准号:
    1727316
  • 财政年份:
    2017
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant

相似海外基金

Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
  • 批准号:
    10634911
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
Optimization, Application, and Dissemination of Imaging Modules for High-speed Mesoscopic Volumetric Recording of Neuroactivity in Scattering Brains
散射脑神经活动高速介观体积记录成像模块的优化、应用和传播
  • 批准号:
    10657354
  • 财政年份:
    2022
  • 资助金额:
    $ 15.5万
  • 项目类别:
Optimization, application, and dissemination of imaging modules for high-speed mesoscopic volumetric recording of neuroactivity in scattering brains
用于散射大脑神经活动高速介观体积记录的成像模块的优化、应用和传播
  • 批准号:
    10401689
  • 财政年份:
    2022
  • 资助金额:
    $ 15.5万
  • 项目类别:
Revealing neural circuits underlying zebrafish behavior using mesoscopic light field microscopy
使用介观光场显微镜揭示斑马鱼行为背后的神经回路
  • 批准号:
    10300922
  • 财政年份:
    2021
  • 资助金额:
    $ 15.5万
  • 项目类别:
Validation of Mesoscopic Imaging to Predict Cutaneous Carcinogenesis and its Therapeutic Response
验证细观成像预测皮肤癌发生及其治疗反应
  • 批准号:
    10595503
  • 财政年份:
    2019
  • 资助金额:
    $ 15.5万
  • 项目类别:
Validation of Mesoscopic Imaging to Predict Cutaneous Carcinogenesis and its Therapeutic Response
验证细观成像预测皮肤癌发生及其治疗反应
  • 批准号:
    10295161
  • 财政年份:
    2019
  • 资助金额:
    $ 15.5万
  • 项目类别:
Validation of Mesoscopic Imaging to Predict Cutaneous Carcinogenesis and its Therapeutic Response
验证细观成像预测皮肤癌发生及其治疗反应
  • 批准号:
    10041690
  • 财政年份:
    2019
  • 资助金额:
    $ 15.5万
  • 项目类别:
Collaborative Research: Interphase Chromatin as a Complex Active Fluid: Experiments and Microscopic to Mesoscopic Modeling
合作研究:间期染色质作为复杂的活性流体:实验和微观到介观建模
  • 批准号:
    1762566
  • 财政年份:
    2018
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Interphase Chromatin as a Complex Active Fluid: Experiments and Microscopic to Mesoscopic Modeling
合作研究:间期染色质作为复杂的活性流体:实验和微观到介观建模
  • 批准号:
    1762506
  • 财政年份:
    2018
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Precise Modeling and Rendering of the surface of objects with mesoscopic structure
具有介观结构的物体表面的精确建模和渲染
  • 批准号:
    15H02727
  • 财政年份:
    2015
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了