Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
基本信息
- 批准号:10634911
- 负责人:
- 金额:$ 53.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressAdoptedAlgorithmsAnimalsAreaBehaviorBiologicalBiteBrainBrain imagingBudgetsCentral Nervous SystemCodeCollectionCommunicationCompensationDataData SetDetectionDevelopmentDyesElectronicsEyeFishesFluorescenceGenerationsGoalsImageKineticsLabelLarvaLasersLightMapsMechanicsMembraneMembrane PotentialsMethodsMicroscopyModelingMotionMotorMusNervous SystemNeuronsNeurosciencesNoiseOpticsPatternPenetrationPerformancePhotobleachingPhotonsPhotoreceptorsPostureResolutionRetinaSamplingScanningSignal TransductionSpeedSpinal CordStimulusStructureSystemTechniquesTectum MesencephaliTestingThree-Dimensional ImagingTimeTissuesTrainingVariantWorkZebrafishbody positionbrain volumecomputerized data processingdata analysis pipelinedeep learningdeep learning algorithmdeep learning modeldenoisingdesigndetectorflexibilityimaging systemimprovedinstrumentationlensmillimetermotor behaviornervous system imagingnetwork architectureneuralneural circuitneuroimagingoptic flowprocessing speedprototyperesponsespatiotemporalsupervised learningthree-dimensional modelingtransmission processvisual stimulusvoltage
项目摘要
PROJECT SUMMARY
The brain is built on billions of neural connections in a highly organized 3D hierarchy. At the same time, neural
activity is highly dynamics that requires kilohertz imaging rate to capture action potentials and sub-threshold
voltage signals, the fundamental bit for neural communication. While the recent advent of genetically encoded
voltage indicators (GEVIs) makes it possible to optically record the neural membrane voltage, the technical
challenges are profound in imaging millimeter-scale volumetric voltage imaging at kilohertz with cellular
resolution. In this proposal, we aim to address the challenges by developing a one-photon mesoscopic (i.e.
millimeter scale field of view, FOV) volumetric voltage imaging, using mesoscopic oblique plane microscopy
(Meso-OPM). Our technique will image >1.8 mm2 FOV, >0.1 mm depth penetration at 1 KHz, capable of
recording voltage signals across an entire nervous system of a Zebrafish larva. The bright and stable GEVIs
Voltron with JF525 dye will be used in our proposed work. Meso-OPM is a variant of light sheet microscopy
(LSM), with a single primary objective lens instead of two in conventional LSM. The simplified optical design
allows 1) leveraging high photon efficiency in LSM; 2) integrating ultra-fast passive optical scanning to achieve >1
MHz frame rate; and 3) flexible optical designs for millimeter FOV and cellular resolution. In addition to the
technical challenges for large-scale ultrafast 3D imaging, the effective data processing pipeline for massive data
is also highly desirable. To this end, we propose a robust and efficient deep learning framework to perform self-
supervised 4D denoising and neuron segmentation. The pipeline enable massive data processing at 10 volume
per second for the downstream neuroscience studies. Finally, to demonstrate the utility of proposed techniques,
we will image Zebrafish in response to optic flow by a drifting grating visual stimuli. We will identify neural circuitry
responsible to the motion compensation to the optic flow (i.e. maintaining body position when presented drifting
grating) from eyes all the way to spinal cord. Altogether, this proposal will greatly improve our capability of
dissecting large-scale neural circuitry, and the sub-sequent modeling and creation of artificial neural circuits.
项目摘要
大脑是建立在数十亿个神经连接的高度组织的3D层次结构上。同时,神经
活动是高度动态的,需要千赫兹成像速率来捕获动作电位和亚阈值
电压信号,神经通信的基本位。虽然最近出现的基因编码
电压指示器(GEVI)使得可以光学记录神经膜电压,
在利用细胞成像技术在千赫兹下成像毫米级体积电压成像方面存在着深刻的挑战
分辨率在这项提案中,我们的目标是通过开发一个单光子介观(即,
毫米级视场(FOV)体积电压成像,使用介观斜平面显微镜
(Meso-OPM)我们的技术将成像>1.8 mm 2 FOV,>0.1 mm深度穿透,1 KHz,能够
记录斑马鱼幼虫整个神经系统的电压信号。明亮稳定的GEVI
Voltron与JF 525染料将用于我们提出的工作。Meso-OPM是光片显微镜的一种变体
(LSM)用单个主物镜透镜代替传统LSM中的两个。简化的光学设计
允许1)在LSM中利用高光子效率; 2)集成超快无源光学扫描以实现>1
MHz帧速率;以及3)灵活的光学设计,用于毫米FOV和蜂窝分辨率。除了有
大规模超快3D成像的技术挑战,海量数据的有效数据处理管道
也是非常理想的。为此,我们提出了一个强大而有效的深度学习框架来执行自学习。
有监督的4D去噪和神经元分割。该管道可实现10卷的海量数据处理
用于下游神经科学研究。最后,为了证明所提出的技术的实用性,
我们将通过漂移光栅视觉刺激来成像斑马鱼对光流的响应。我们将识别神经回路
负责光流的运动补偿(即,当呈现漂移时保持身体位置
从眼睛一直到脊髓。总之,这项建议将大大提高我们的能力,
解剖大规模神经电路,以及人工神经电路的子系统建模和创建。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ji Yi其他文献
Ji Yi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ji Yi', 18)}}的其他基金
Advancing visible light optical coherence tomography in glaucoma detection
推进可见光光学相干断层扫描在青光眼检测中的应用
- 批准号:
10567788 - 财政年份:2023
- 资助金额:
$ 53.87万 - 项目类别:
A novel method for volumetric oxygen mapping in living retina
一种在活体视网膜中进行体积氧测绘的新方法
- 批准号:
10597011 - 财政年份:2021
- 资助金额:
$ 53.87万 - 项目类别:
A novel method for volumetric oxygen mapping in living retina
一种在活体视网膜中进行体积氧测绘的新方法
- 批准号:
10361407 - 财政年份:2021
- 资助金额:
$ 53.87万 - 项目类别:
Sensitive detection of malignancy in primary acquired melanosis by advanced optical imaging
通过先进光学成像灵敏检测原发性获得性黑变病的恶性肿瘤
- 批准号:
10251585 - 财政年份:2020
- 资助金额:
$ 53.87万 - 项目类别:
Predictive markers for diabetic retinopathy via quantitative imaging of retinal capillary functions
通过视网膜毛细血管功能的定量成像预测糖尿病视网膜病变的标志物
- 批准号:
10461105 - 财政年份:2018
- 资助金额:
$ 53.87万 - 项目类别:
Predictive markers for diabetic retinopathy via quantitative imaging of retinal capillary functions
通过视网膜毛细血管功能的定量成像预测糖尿病视网膜病变的标志物
- 批准号:
10220441 - 财政年份:2018
- 资助金额:
$ 53.87万 - 项目类别:
Predictive markers for diabetic retinopathy via quantitative imaging of retinal capillary functions
通过视网膜毛细血管功能的定量成像预测糖尿病视网膜病变的标志物
- 批准号:
10250563 - 财政年份:2018
- 资助金额:
$ 53.87万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 53.87万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 53.87万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 53.87万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 53.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 53.87万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 53.87万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 53.87万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 53.87万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 53.87万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 53.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




