STTR Phase I: Probabilistic and Explainable Deep Learning for the Intuitive Predictive Maintenance of Industrial and Agricultural Equipment
STTR 第一阶段:用于工业和农业设备直观预测维护的概率和可解释深度学习
基本信息
- 批准号:2036044
- 负责人:
- 金额:$ 25.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project proposes a deep learning approach to predictive maintenance of industrial and agricultural equipment. High productivity demands and just-in-time approaches to manufacturing mean that equipment downtime can be extremely expensive; Research shows that the average manufacturer deals with 800 hours of downtime per year. Further, an increasing quantity of aging equipment and a maintenance workforce that is largely reaching retirement age have led to a situation where maintenance staff often lack the knowledge, training, and/or manpower to address a growing pool of aging assets. This project intends to bring forward a novel suite of intuitive and explainable technologies that can help reduce or eliminate unexpected downtime and help digitally capture and transfer expert knowledge from the retiring workforce.This Small Business Technology Transfer (STTR) Phase I project proposes a novel, deep learning approach to machinery prognostics. Many existing deep learning approaches focus on the most likely failure scenarios given a set of training data. However, monitored equipment may not exbibit behavior covered in that training set, leading to low-confidence predictions. This approach will not only predict the remaining useful life of a machine component, but it will also quantify the uncertainty of a prediction through an ensemble of models and a temporal fusion of predictions. As a result, maintenance decisions can be made from a risk-based perspective, eliminating unnecessary maintenance stemming from low-confidence predictions. Furthermore, many existing deep learning approaches lack the ability to intuitively explain their predictions to human users. In critical applications where bad predictions have serious consequences, maintenance personnel must understand and trust an artificially intelligent predictive maintenance partner. The proposed solution produces an intuitive visual explanation for the model’s prediction by highlighting and animating the segments of a raw data signal that are contributing most significantly to the prediction. This will allow trained personnel to quickly make optimal maintenance decisions by fusing data-driven insights with their existing domain expertise.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个小企业技术转移(STTR)第一阶段项目的更广泛影响/商业潜力提出了一种深度学习方法,用于工业和农业设备的预测性维护。高生产率要求和准时制制造方法意味着设备停机时间可能非常昂贵;研究表明,制造商平均每年要处理800小时的停机时间。此外,越来越多的老化设备和大部分达到退休年龄的维修人员导致维修人员往往缺乏知识、培训和/或人力来处理日益增长的老化资产池。该项目旨在提出一套新颖的直观和可解释的技术,可以帮助减少或消除意外停机时间,并帮助以数字方式捕获和转移退休劳动力的专业知识。这个小型企业技术转移(STTR)第一阶段项目提出了一种新颖的机器预测深度学习方法。许多现有的深度学习方法专注于给定一组训练数据的最可能失败的场景。然而,被监测的设备可能不会表现出该训练集所涵盖的行为,从而导致低置信度的预测。这种方法不仅可以预测机器部件的剩余使用寿命,而且还可以通过模型集合和预测的时间融合来量化预测的不确定性。因此,可以从基于风险的角度做出维护决策,从而消除由于低置信度预测而产生的不必要的维护。此外,许多现有的深度学习方法缺乏直观地向人类用户解释其预测的能力。在错误预测会造成严重后果的关键应用中,维护人员必须理解并信任人工智能的预测性维护合作伙伴。提出的解决方案通过突出显示对预测贡献最大的原始数据信号片段并将其动画化,为模型的预测提供直观的视觉解释。这将允许训练有素的人员通过将数据驱动的见解与他们现有的领域专业知识融合在一起,快速做出最佳的维护决策。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
IIoT Deployment of a Physics-Informed Deep Learning Model for Online Bearing Fault Diagnostics
IIoT 部署基于物理的深度学习模型,用于在线轴承故障诊断
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lu, Hao;Allen, Cade;Nemani, Venkat;Hu, Chao;Zimmerman, Andrew
- 通讯作者:Zimmerman, Andrew
A physics-informed feature weighting method for bearing fault diagnostics
- DOI:10.1016/j.ymssp.2023.110171
- 发表时间:2023-02-07
- 期刊:
- 影响因子:8.4
- 作者:Lu, Hao;Nemani, Venkat Pavan;Zimmerman, Andrew T.
- 通讯作者:Zimmerman, Andrew T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Zimmerman其他文献
Combined lung and liver transplantation in a girl with cystic fibrosis
囊性纤维化女孩的肺和肝联合移植
- DOI:
10.1007/bf03013549 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Andrew Zimmerman;T. Howard;C. Huddleston - 通讯作者:
C. Huddleston
Superfluid stiffness of twisted trilayer graphene superconductors
扭曲三层石墨烯超导体的超流体刚度
- DOI:
10.1038/s41586-024-08444-3 - 发表时间:
2025-02-05 - 期刊:
- 影响因子:48.500
- 作者:
Abhishek Banerjee;Zeyu Hao;Mary Kreidel;Patrick Ledwith;Isabelle Phinney;Jeong Min Park;Andrew Zimmerman;Marie E. Wesson;Kenji Watanabe;Takashi Taniguchi;Robert M. Westervelt;Amir Yacoby;Pablo Jarillo-Herrero;Pavel A. Volkov;Ashvin Vishwanath;Kin Chung Fong;Philip Kim - 通讯作者:
Philip Kim
Andrew Zimmerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Zimmerman', 18)}}的其他基金
STTR Phase II: Probabilistic and Explainable Deep Learning for the Intuitive Predictive Maintenance of Industrial and Agricultural Equipment
STTR 第二阶段:用于工业和农业设备直观预测维护的概率和可解释深度学习
- 批准号:
2222630 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Cooperative Agreement
Collaborative Research: Exploring the dynamic interaction between pyrogenic carbon and extracellular enzymes and its impacts on organic matter cycling in fire-impacted environments
合作研究:探索热解碳和细胞外酶之间的动态相互作用及其对受火灾影响的环境中有机物循环的影响
- 批准号:
2120122 - 财政年份:2021
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
Detection of dissolved pyrogenic carbon export following the Southern California fires of 2017
2017 年南加州火灾后溶解热解碳输出的检测
- 批准号:
1824133 - 财政年份:2018
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
Collaborative Research: Dissolved pyrogenic organic matter dynamics in the environment
合作研究:环境中溶解热解有机物动力学
- 批准号:
1451367 - 财政年份:2015
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
SBIR Phase I: A Multifunctional Piezoelectric Smart Flooring System for Energy Efficient Control in Commercial Building Systems
SBIR 第一阶段:用于商业建筑系统节能控制的多功能压电智能地板系统
- 批准号:
1113466 - 财政年份:2011
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
Collaborative Research: Pre-Columbian Human Impacts on Amazonian Ecosystems
合作研究:前哥伦布时代人类对亚马逊生态系统的影响
- 批准号:
0743357 - 财政年份:2008
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
Collaborative Research: Black Carbon Remineralization in the Environment: Physical and Chemical Controls
合作研究:环境中的黑碳再矿化:物理和化学控制
- 批准号:
0819706 - 财政年份:2008
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
Energy Conservation as a Form of Technological Citizenship: Implication for the Energy Future
节能作为技术公民的一种形式:对能源未来的影响
- 批准号:
9601555 - 财政年份:1996
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
Improvement of X-ray phase imaging method using diffusion probabilistic model
利用扩散概率模型改进X射线相位成像方法
- 批准号:
23K11700 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
STTR Phase II: Probabilistic and Explainable Deep Learning for the Intuitive Predictive Maintenance of Industrial and Agricultural Equipment
STTR 第二阶段:用于工业和农业设备直观预测维护的概率和可解释深度学习
- 批准号:
2222630 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Cooperative Agreement
Probabilistic life cycle analysis of alternative reinforcement products in the design of concrete structures - Phase One: Laboratory Durability Testing
混凝土结构设计中替代加固产品的概率生命周期分析 - 第一阶段:实验室耐久性测试
- 批准号:
514608-2017 - 财政年份:2017
- 资助金额:
$ 25.6万 - 项目类别:
Engage Grants Program
multiple phase transition of probabilistic models on non-Euclidean graphs
非欧几里得图上概率模型的多相变
- 批准号:
15K17716 - 财政年份:2015
- 资助金额:
$ 25.6万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A Novel Probabilistic-Based Approach to the Simulation of Disperse Two-Phase Flows with Application to Atmospheric Science
一种基于概率的新型分散两相流模拟方法及其在大气科学中的应用
- 批准号:
1318161 - 财政年份:2013
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant
Climate model validation and generation of probabilistic climate projections using data from Phase 5 of the Climate Model Intercomparison Project
使用气候模型比对项目第五阶段的数据验证气候模型并生成概率气候预测
- 批准号:
DP130103261 - 财政年份:2013
- 资助金额:
$ 25.6万 - 项目类别:
Discovery Projects
CAREER: Integrating Geometric, Probabilistic, and Topological Methods for Phase Space Transport in Dynamical Systems
职业:集成几何、概率和拓扑方法用于动力系统中的相空间传输
- 批准号:
1150456 - 财政年份:2012
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
Probabilistic study toward scaling limits of the phase separation line and scaling exponents
相分离线和标度指数的标度极限的概率研究
- 批准号:
23540136 - 财政年份:2011
- 资助金额:
$ 25.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of fluctuations of phase boundaries in large interacting systems from the probabilistic point of view
从概率角度研究大型相互作用系统相界涨落
- 批准号:
15340032 - 财政年份:2003
- 资助金额:
$ 25.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unwrapping Phase Images: Theory and Applications Using Probabilistic Inference Techniques
展开相位图:使用概率推理技术的理论和应用
- 批准号:
0105719 - 财政年份:2001
- 资助金额:
$ 25.6万 - 项目类别:
Continuing Grant