EAGER: QAC-QSA: Hamiltonian Reconstruction for Ansatz Selection and Validation of the Variational Quantum Eigensolver
EAGER:QAC-QSA:用于变分量子本征求解器 Ansatz 选择和验证的哈密顿重建
基本信息
- 批准号:2038027
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Peter McMahon and Eun-Ah Kim of Cornell University are supported by an EAGER award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to develop new methods for using quantum computers to solve quantum-simulation problems. The Condensed Matter and Materials program in the Division of Materials Research also cofunds this award. Professors McMahon and Kim are collaborating to develop computational methods to check that a quantum computer has computed the correct answer to a quantum chemistry or physics simulation problem. A challenge with quantum computers is that they are able to do computations that classical computers cannot, and so it is necessary to develop new methods to determine if the answer produced by a quantum computer is valid or not because one cannot simply check the answer against what a classical computer can produce. The methods being developed by McMahon and Kim, and their respective groups, both allow the answer to be checked, and, if the answer is incorrect, give information on how to improve the algorithm being run on the quantum computer. This work has immediate broader impacts in the quantum-computing industry in the United States, where there is substantial effort underway to use quantum computers to solve both chemistry and physics simulation problems, but for which verification methods are needed. The development and testing of methods being conducted in this work will be transferred to industry practice through the open sharing of code and results. Graduate students working on this research will develop transferable skills that will help them gain employment in quantum information sciences careers. A longstanding challenge in quantum-condensed-matter research is the development of methods to find or approximate the ground states of frustrated quantum spin systems. McMahon and Kim are adapting previously developed Hamiltonian-reconstruction methods so that it is possible to infer, from measurements of the quantum states produced in a quantum computer by the Variational Quantum Eigensolver (VQE) algorithm, the Hamiltonian that is most likely to have given rise to the VQE state. In order to assess what classes of states (i.e., VQE ansaetze) are appropriate for a particular problem, it is necessary to be able to verify that low-energy states in that class are consistent with the Hamiltonian one is trying to find the ground state of. It is for this purpose that McMahon and Kim are using the Hamiltonian-reconstruction method with VQE. McMahon and Kim are applying the method with an example use case of solving a quantum spin model that has so far resisted all classical methods, and that is defined on a 2D square lattice, making it amenable to execution on many near-term quantum computers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
康奈尔大学的Peter McMahon和Eun-Ah Kim获得了化学系化学理论,模型和计算方法项目的EAGER奖的支持,以开发使用量子计算机解决量子模拟问题的新方法。材料研究部的凝聚态物质和材料计划也共同资助了这个奖项。McMahon教授和Kim教授正在合作开发计算方法,以检查量子计算机是否计算出了量子化学或物理模拟问题的正确答案。量子计算机的一个挑战是,它们能够进行经典计算机无法进行的计算,因此有必要开发新的方法来确定量子计算机产生的答案是否有效,因为人们不能简单地将答案与经典计算机产生的答案进行比较。McMahon和Kim以及他们各自的团队正在开发的方法都允许检查答案,如果答案不正确,则提供有关如何改进量子计算机上运行的算法的信息。这项工作对美国的量子计算行业产生了更广泛的影响,美国正在努力使用量子计算机来解决化学和物理模拟问题,但需要验证方法。在这项工作中进行的方法的开发和测试将通过开放共享代码和结果转移到行业实践中。从事这项研究的研究生将发展可转移的技能,这将有助于他们在量子信息科学职业中获得就业机会。量子凝聚态研究中的一个长期挑战是发展找到或近似受抑量子自旋系统基态的方法。McMahon和Kim正在调整以前开发的哈密顿重构方法,以便可以从量子计算机中通过变分量子本征解算器(VQE)算法产生的量子态的测量中推断出最有可能产生VQE状态的哈密顿量。为了评估哪类状态(即,VQE ansaetze)适合于特定的问题,有必要能够验证该类中的低能态与试图找到基态的哈密顿量一致。正是出于这个目的,McMahon和Kim使用了具有VQE的Hamilton重建方法。McMahon和Kim正在将该方法应用于解决量子自旋模型的示例用例,该模型迄今为止抵抗了所有经典方法,并且定义在2D正方形晶格上,使其适合在许多近期量子计算机上执行。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter McMahon其他文献
The effect of contrast bolus timing techniques on breast dose in CTPA studies in pregnant patients
- DOI:
10.1016/j.ejmp.2015.07.034 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:
- 作者:
Michael Rowan;David Mitchell;Peter McMahon - 通讯作者:
Peter McMahon
Evaluation of Disparities in Higher-Risk Myelodysplastic Syndromes (HR-MDS) Patient Treatment Patterns in a Large US Health System
- DOI:
10.1182/blood-2023-182031 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Kristin J. Moore;Nicole M. Engel-Nitz;Peter McMahon;Jason Beal;Teraneh Z. Jhaveri;Mellissa Williamson;Katherine Andrade;Christina Landis;Islam Sadek;Cosmina Hogea - 通讯作者:
Cosmina Hogea
Machine Learning Approach to Understand Real-World Treatment in Patients with Higher-Risk Myelodysplastic Syndromes
- DOI:
10.1182/blood-2023-182241 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Vandana Priya;Vivek P. Vaidya;Smita Agrawal;Neeraj Singh;Kaveri Chatra;Dhaval Parmar;Raymond Yan;Rahul K. Das;Mahnoush Haririfar;Peter McMahon;Mellissa Williamson;Islam Sadek;Cosmina Hogea - 通讯作者:
Cosmina Hogea
<strong>POSTER:</strong> MDS-401 Higher-Risk Myelodysplastic Neoplasms (HR-MDS) Patient Characteristics in a Large, Integrated United States (US) Healthcare System
- DOI:
10.1016/s2152-2650(23)00592-x - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
Kristin Moore;Nicole Engel-Nitz;Peter McMahon;Jason Beal;Tizzy Jhaveri;Mellissa Williamson;Kate Andrade;Christina Landis;Cosmina Hogea - 通讯作者:
Cosmina Hogea
A Patient-Centered Programmatic Approach for Higher-Risk Myelodysplastic Syndromes (HR-MDS) in the US Community Oncology Setting
- DOI:
10.1182/blood-2023-186836 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
James M. Rossetti;Rushir Choksi;Anupama Vasudevan;Simon Blanc;Dawn Brenneman;Brandon Wang;Peter McMahon;Jason Beal;Teraneh Z. Jhaveri;Mellissa Williamson;Cosmina Hogea - 通讯作者:
Cosmina Hogea
Peter McMahon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于细菌接触损伤与应激诱导的QAC/PVDF膜抗生物污染机制与调控
- 批准号:51808395
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
- 批准号:
2337930 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
- 批准号:
2038011 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER‐QAC‐QSA: Quantum Chemistry with Mean-field Cost from Semidefinite Programming on Quantum Computing Devices
EAGER – QAC – QSA:量子计算设备上半定编程的具有平均场成本的量子化学
- 批准号:
2035876 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Variational quantum algorithms for transcorrelated electronic-structure Hamiltonians
EAGER-QAC-QSA:互相关电子结构哈密顿量的变分量子算法
- 批准号:
2037832 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Bifurcation-Enabled Efficient Preparation of Many-body Ground States
EAGER-QAC-QSA:分叉有效制备多体基态
- 批准号:
2037987 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
- 批准号:
2037996 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: QAC-QSA: Resource Reduction in Quantum Computational Chemistry Mapping by Optimizing Orbital Basis Sets
EAGER:QAC-QSA:通过优化轨道基集减少量子计算化学绘图中的资源
- 批准号:
2037263 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Variational Quantum Algorithms for Nonequilibrium Quantum Many-Body Systems
EAGER-QAC-QSA:非平衡量子多体系统的变分量子算法
- 批准号:
2038010 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: QAC-QSA: A HYBRID QUANTUM-CLASSICAL PATH-INTEGRAL METHOD FOR CHEMICAL DYNAMICS
EAGER:QAC-QSA:化学动力学混合量子经典路径积分方法
- 批准号:
2038005 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
- 批准号:
2038028 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




