Collaborative Research: Magnetic mapping of bio-inspired clusters of iron oxide nanoparticles
合作研究:仿生氧化铁纳米粒子簇的磁力测绘
基本信息
- 批准号:2038046
- 负责人:
- 金额:$ 27.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Man-made iron oxide nanoparticles have widespread importance for labeling cells and molecules both inside and outside the human body. Besides synthetic particles, many organisms also generate naturally occurring iron oxide nanoparticles, known as ferritin, to store and regulate iron within their bodies. Whether man-made or natural, these iron oxide nanoparticles have a magnetization that can be used as a tool for manipulation or sensing in biological environments. However, nanoparticles often aggregate in complex bio-environments, and the effect of aggregation on their collective magnetic properties is not well understood. The overall objective of this work is to explore the relationship between nanoparticle clustering and resultant magnetic properties. Findings from this work can be potentially used to engineer magnetism-based sensing tools for more accurately tracking iron nanoparticles in biological systems. Data from this project can also advance other biomedical applications of iron oxide particles, such as their uses in magnetic hyperthermia for cancer therapy or as contrast agents for medical imaging. Besides advancing the field of bio-magnetism and nano-biotechnology, this research project will help train the next generation of scientists and engineers by providing research experience to students in state-of-the-art techniques for synthesis and characterization of nanoparticles, by enhancing infrastructure for research and education through the development of new techniques for magnetic characterization and by broadening participation of underrepresented groups in science and engineering activities. Iron-oxide nanoparticles have become crucial tools in biomedicine and bio-nanotechnology due to their magnetic behavior. These include synthetic magnetite nanoparticles (~5 to 10 nm in diameter), and naturally occurring ferrihydrite core (~ 5 to 8 nm) present in ferritin, the largest iron-storage protein in the human body. Determining the spatial localization and quantification of these iron-oxide nanoparticles in cells and tissues is critical for a number of applications in health. Thus far our ability to characterize the spatial distribution and quantity of iron oxide nanoparticles is limited to biochemical approaches like histochemical staining, which are largely qualitative. Magnetically sensitive detection offers an alternative, non-destructive, label free and quantitative means for characterization of iron-oxide nanoparticles. However, in biological systems, nanoparticles are often found in aggregates/clusters, which can impact their local and global magnetic properties and complicate interpretation of magnetic signals. The goal of this project is to understand how clustering of bio-inspired iron-oxide nanoparticles affect their magnetic properties across many length scales (nanometer to micrometer scale). Specifically, interactions between individual particles, as well as between larger clusters of particles, will be studied using a range of magnetically sensitive techniques. Biologically derived clusters of particles as well as artificially engineered aggregates will be used for the study. These include synthetic magnetite nanoparticles and naturally occurring ferrihydrite cores present in ferritin. In some cases, clusters will be nanofabricated using template guided assembly, so that geometric parameters of clusters such as size, shape, and interparticle distance can be varied systematically. Characterization of particle assemblies will be performed using techniques such as analytical electron microscopy, magnetic force microscopy, super-conducting quantum interference device magnetometry and magnetic resonance imaging. Results from this study will be used to develop advanced, magnetism-based metrology for localizing and quantifying aggregates of iron oxide nanoparticles in biological environments. An understanding of the effect of clustering on magnetic properties can enable quantitative histo-magnetic detection schemes for mapping iron deposits in tissue sections. The project activities will be accomplished by providing multidisciplinary and inter-institutional research experiences for graduate and undergraduate students and by establishing new research collaborations. The project will also include outreach efforts to broaden participation, by developing and offering hands-on workshops on engineering concepts to under-privileged middle school students at a local school.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人造氧化铁纳米颗粒在标记人体内和体外的细胞和分子方面具有广泛的重要性。除了合成颗粒外,许多生物还会产生天然的氧化铁纳米颗粒,即铁蛋白,用于储存和调节体内的铁。无论是人造的还是天然的,这些氧化铁纳米颗粒都具有磁性,可以用作生物环境中操作或传感的工具。然而,纳米粒子往往在复杂的生物环境中聚集,聚集对其集体磁性的影响尚不清楚。这项工作的总体目标是探索纳米颗粒聚类和由此产生的磁性之间的关系。这项工作的发现可以潜在地用于设计基于磁学的传感工具,以便更准确地跟踪生物系统中的铁纳米颗粒。该项目的数据还可以促进氧化铁颗粒在其他生物医学领域的应用,例如用于癌症治疗的磁热疗或作为医学成像的造影剂。除了推动生物磁学和纳米生物技术领域的发展外,该研究项目还将通过为学生提供纳米颗粒合成和表征最先进技术的研究经验,帮助培养下一代科学家和工程师。通过开发磁性表征的新技术来加强研究和教育的基础设施,并扩大代表性不足的群体参与科学和工程活动。氧化铁纳米颗粒由于其磁性特性而成为生物医学和生物纳米技术的重要工具。这些包括合成的磁铁矿纳米颗粒(直径约5至10纳米),以及存在于铁蛋白(人体最大的储铁蛋白)中的天然水合铁核(直径约5至8纳米)。确定这些氧化铁纳米颗粒在细胞和组织中的空间定位和定量对于健康方面的许多应用至关重要。到目前为止,我们表征氧化铁纳米颗粒空间分布和数量的能力仅限于组织化学染色等生化方法,这在很大程度上是定性的。磁敏检测为氧化铁纳米颗粒的表征提供了一种替代的、非破坏性的、无标签的和定量的方法。然而,在生物系统中,纳米颗粒经常以聚集/团簇的形式存在,这可能会影响它们的局部和全局磁性,并使磁信号的解释复杂化。这个项目的目标是了解生物启发的氧化铁纳米颗粒如何在许多长度尺度(纳米到微米尺度)上影响它们的磁性。具体地说,单个粒子之间的相互作用,以及更大的粒子簇之间的相互作用,将使用一系列磁敏感技术进行研究。生物衍生的颗粒簇以及人工工程的聚集体将用于研究。这些包括合成的磁铁矿纳米颗粒和存在于铁蛋白中的天然水合铁核。在某些情况下,团簇将使用模板引导组装的纳米制造,因此团簇的几何参数,如大小,形状和粒子间距离可以系统地变化。粒子组合的表征将使用分析电子显微镜、磁力显微镜、超导量子干涉装置磁强计和磁共振成像等技术进行。这项研究的结果将用于开发先进的、基于磁学的计量方法,用于定位和定量生物环境中氧化铁纳米颗粒的聚集。了解聚类对磁性能的影响可以实现定量组织磁检测方案,用于绘制组织切片中的铁沉积物。项目活动将通过为研究生和本科生提供多学科和跨机构的研究经验以及建立新的研究合作来完成。该项目还将包括扩大参与范围的努力,为当地一所学校的贫困中学生开发和提供有关工程概念的实践讲习班。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shaped Magnetogel Microparticles for Multispectral Magnetic Resonance Contrast and Sensing
- DOI:10.1021/acssensors.3c01373
- 发表时间:2023-12-19
- 期刊:
- 影响因子:8.9
- 作者:Oberdick,Samuel D.;Dodd,Stephen J.;Zabow,Gary
- 通讯作者:Zabow,Gary
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Oberdick其他文献
A Comparison of Histo-Chemical and Histo-Magnetic Detection of Iron
- DOI:
10.1016/j.bpj.2019.11.2571 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Kevin J. Walsh;Stavan Shah;Ping Wei;Samuel Oberdick;Dana McTigue;Gunjan Agarwal - 通讯作者:
Gunjan Agarwal
Samuel Oberdick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
- 批准号:
2305404 - 财政年份:2023
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233592 - 财政年份:2023
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
Collaborative Research: Organized Nanochannel Materials from Biomolecular Magnetic Organic Frameworks-
合作研究:从生物分子磁性有机框架组织纳米通道材料-
- 批准号:
2303580 - 财政年份:2023
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
- 批准号:
2305402 - 财政年份:2023
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers
合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面
- 批准号:
2300156 - 财政年份:2023
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: The history of the Earth's magnetic field strength over the last five million years: Filling in the southern hemisphere gap
合作研究:NSFGEO-NERC:过去五百万年地球磁场强度的历史:填补南半球的空白
- 批准号:
2245629 - 财政年份:2023
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233375 - 财政年份:2023
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Discovery of novel magnetic materials through pseudospin control
合作研究:DMREF:通过赝自旋控制发现新型磁性材料
- 批准号:
2323857 - 财政年份:2023
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
Collaborative Research: A Comprehensive Theoretical Study of Cosmological Magnetic Fields and Turbulence: from the Early to Late Time Universe
合作研究:宇宙磁场和湍流的综合理论研究:从宇宙早期到晚期
- 批准号:
2307699 - 财政年份:2023
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant