CPS:Medium: Safe Learning-Enabled Cyberphysical Systems
CPS:中:支持安全学习的网络物理系统
基本信息
- 批准号:2038493
- 负责人:
- 金额:$ 87.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In spite of tremendous advances in machine learning, the goal of designing truly autonomous cyber-physical systems (CPS), capable of learning from and interacting with the environment to achieve complex specifications remains elusive. This research seeks to address this apparent paradox (advances in machine learning/relatively low levels of autonomy) by developing a new class of verifiable safe learning- enabled CPS, capable of adapting to previously unseen dynamic scenarios where the data is generated, and decisions must be made, as the system operates. It addresses the CPS challenges posed by the data revolution and highly dynamic systems by creating a new framework at the confluence of dynamical systems, machine learning and viability theory, specifically tailored to learning and safely acting in uncertain, data deluged scenarios.The research is organized around three tightly interacting thrusts -- R1: Joint learning of sparse latent features and manifolds, R2: Real-time inference in dynamic scenarios; and R3: Verifiable decision-making algorithms -- that exploit the underlying sparse structure induced by the dynamics of the CPS to obtain fast solutions to problems that challenge current techniques. A key feature of the proposed framework is its ability to take advantage of the tight coupling between thrusts to obtain tractable problems. Examples are low-complexity real-time inference methods that leverage parsimonious structures unveiled during learning, and control strategies that verify closed-loop properties by using these structures to recast the problem into a hybrid system analysis form.Education is proactively integrated into this project. At the pre-college level, summer STEM programs for urban high school students will be developed. Participants will explore CPS concepts and complete a final project endowing autonomous vehicles with limited learning capabilities. At the undergraduate level, ideas put forth in this proposal will be infused through the curriculum. The hallmark of the educational program will be its integration through the central metaphor of learning-enabled CPS. At the graduate level, this integrative theme across the disciplines represented by the Co-PIs will be continued, including teaching of a course that includes experiential assignments. In addition, this project will provide opportunities and support for graduate students to engage as members of an interdisciplinary team. The strategy to broaden participation is two pronged: on one hand, it will leverage, in addition to the summer STEM programs for urban youth, NUPRIME (NEU's Program in Multicultural Engineering). On the other hand, it will take advantage of the co-PIs leadership roles in their respective societies to organize events targeting high schoolers and underrepresented groups at conferences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管机器学习取得了巨大的进步,但设计真正自主的网络物理系统(CPS)的目标仍然难以实现,这些系统能够从环境中学习并与环境交互,以实现复杂的规范。 这项研究旨在通过开发一类新的可验证的安全学习支持CPS来解决这个明显的悖论(机器学习的进步/相对较低的自主水平),能够适应以前看不到的动态场景,其中数据生成,并且必须做出决策,因为系统运行。 它解决了数据革命和高度动态系统带来的CPS挑战,在动力系统,机器学习和可行性理论的交汇处创建了一个新的框架,专门针对学习和安全地在不确定的,数据泛滥的场景中行动。研究围绕三个紧密互动的推力组织- R1:稀疏潜在特征和流形的联合学习,R2:动态场景中的实时推理; R3:可验证的决策算法-利用CPS动态引起的底层稀疏结构,以快速解决挑战当前技术的问题。 所提出的框架的一个关键特征是它能够利用推力之间的紧密耦合来获得易于处理的问题。例如,利用学习过程中发现的简约结构的低复杂性实时推理方法,以及通过使用这些结构将问题重新转换为混合系统分析形式来验证闭环特性的控制策略。在大学预科阶段,将为城市高中学生开发夏季STEM课程。参与者将探索CPS概念,并完成一个最终项目,赋予自动驾驶汽车有限的学习能力。 在本科阶段,本提案中提出的想法将通过课程注入。该教育计划的标志将是通过学习型CPS的中心隐喻进行整合。在研究生阶段,将继续以Co-PI为代表的跨学科的综合主题,包括教授包括体验式作业的课程。此外,该项目将为研究生提供机会和支持,作为跨学科团队的成员参与。扩大参与的战略是双管齐下的:一方面,除了针对城市青年的夏季STEM计划外,它还将利用NUPRIME(NEU的多元文化工程计划)。另一方面,它将利用co-PI在各自社团中的领导作用,在会议上组织针对高中生和代表性不足的群体的活动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Quadratic Stabilization of Continuous LTI Systems
- DOI:10.1016/j.ifacol.2020.12.2252
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:T. Dai;M. Sznaier;Biel Roig Solvas
- 通讯作者:T. Dai;M. Sznaier;Biel Roig Solvas
Key Frame Proposal Network for Efficient Pose Estimation in Videos
- DOI:10.1007/978-3-030-58520-4_36
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Yuexi Zhang;Yin Wang;O. Camps;M. Sznaier
- 通讯作者:Yuexi Zhang;Yin Wang;O. Camps;M. Sznaier
A convex optimization approach to synthesizing state feedback data-driven controllers for switched linear systems
- DOI:10.1016/j.automatica.2022.110190
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:T. Dai;M. Sznaier
- 通讯作者:T. Dai;M. Sznaier
Euclidean Distance Bounds for Linear Matrix Inequalities Analytic Centers Using a Novel Bound on the Lambert Function
线性矩阵不等式解析中心的欧几里得距离界限使用兰伯特函数的新界限
- DOI:10.1137/20m1349928
- 发表时间:2022
- 期刊:
- 影响因子:2.2
- 作者:Roig-Solvas, Biel;Sznaier, Mario
- 通讯作者:Sznaier, Mario
A Semi-Algebraic Optimization Approach to Data-Driven Control of Continuous-Time Nonlinear Systems
连续时间非线性系统数据驱动控制的半代数优化方法
- DOI:10.1109/lcsys.2020.3003505
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Dai, T.;Sznaier, M.
- 通讯作者:Sznaier, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mario Sznaier其他文献
Probabilistic Optimal Estimation and Filtering under Uncertainty
不确定性下的概率最优估计和过滤
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
F. Dabbene;Mario Sznaier;R. Tempo - 通讯作者:
R. Tempo
Data-Driven Safe Control of Discrete-Time Non-Linear Systems
离散时间非线性系统的数据驱动安全控制
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3
- 作者:
Jian Zheng;Jared Miller;Mario Sznaier - 通讯作者:
Mario Sznaier
Risk adjusted output feedback Receding Horizon control of constrained Linear Parameter Varying Systems
约束线性参数变化系统的风险调整输出反馈后退控制
- DOI:
10.23919/ecc.2007.7068641 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Mario Sznaier;C. Lagoa;Necmiye Ozay - 通讯作者:
Necmiye Ozay
Receding horizon: an easy way to improve performance in LPV systems
- DOI:
10.1109/acc.1999.786409 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Mario Sznaier - 通讯作者:
Mario Sznaier
Mario Sznaier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mario Sznaier', 18)}}的其他基金
Collaborative Research: Data Driven Control of Switched Systems with Applications to Human Behavioral Modification
合作研究:切换系统的数据驱动控制及其在人类行为修正中的应用
- 批准号:
1808381 - 财政年份:2018
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
CPS: Frontier: Collaborative Research: Data-Driven Cyberphysical Systems
CPS:前沿:协作研究:数据驱动的网络物理系统
- 批准号:
1646121 - 财政年份:2017
- 资助金额:
$ 87.87万 - 项目类别:
Continuing Grant
CRISP Type 2: Identification and Control of Uncertain, Highly Interdependent Processes Involving Humans with Applications to Resilient Emergency Health Response
CRISP 类型 2:识别和控制涉及人类的不确定、高度相互依赖的过程及其在弹性紧急健康响应中的应用
- 批准号:
1638234 - 财政年份:2016
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
Robust Identification and Model Validation for a Class of Nonlinear Dynamic Systems and Applications
一类非线性动态系统和应用的鲁棒识别和模型验证
- 批准号:
1404163 - 财政年份:2014
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
Robust Identification of a Class of Structured Systems with High Dimensional Outputs and Applications
具有高维输出和应用的一类结构化系统的鲁棒识别
- 批准号:
0901433 - 财政年份:2009
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
Risk Adjusted Robust Control Theory and Applications
风险调整鲁棒控制理论及应用
- 批准号:
0648054 - 财政年份:2006
- 资助金额:
$ 87.87万 - 项目类别:
Continuing Grant
A Systems Theoretic Approach to Robust Active Vision
鲁棒主动视觉的系统理论方法
- 批准号:
0641498 - 财政年份:2006
- 资助金额:
$ 87.87万 - 项目类别:
Continuing Grant
Risk Adjusted Robust Control Theory and Applications
风险调整鲁棒控制理论及应用
- 批准号:
0501166 - 财政年份:2005
- 资助金额:
$ 87.87万 - 项目类别:
Continuing Grant
A Systems Theoretic Approach to Robust Active Vision
鲁棒主动视觉的系统理论方法
- 批准号:
0221562 - 财政年份:2002
- 资助金额:
$ 87.87万 - 项目类别:
Continuing Grant
Robust Control of Constrained Linear Parameter Varying Systems and Applications
约束线性参数变化系统的鲁棒控制及其应用
- 批准号:
0115946 - 财政年份:2001
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
相似海外基金
CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
- 批准号:
2333120 - 财政年份:2024
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Harmonious and Safe Coordination of Vehicles with Diverse Human / Machine Autonomy
合作研究:CPS:中:具有多样化人/机自主性的车辆的和谐与安全协调
- 批准号:
2312465 - 财政年份:2023
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Harmonious and Safe Coordination of Vehicles with Diverse Human / Machine Autonomy
合作研究:CPS:中:具有多样化人/机自主性的车辆的和谐与安全协调
- 批准号:
2312466 - 财政年份:2023
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312093 - 财政年份:2023
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312094 - 财政年份:2023
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
An escape tower for the safe evacuation of single-staircase medium-sized and high-rise buildings to help solve the UK fire safety crisis
单楼梯中高层建筑安全疏散逃生塔助力解决英国消防安全危机
- 批准号:
10030231 - 财政年份:2022
- 资助金额:
$ 87.87万 - 项目类别:
Collaborative R&D
Collaborative Research: SaTC: CORE: Medium: Toward safe, private, and secure home automation: from formal modeling to user evaluation
协作研究:SaTC:核心:中:迈向安全、私密和可靠的家庭自动化:从形式建模到用户评估
- 批准号:
2320903 - 财政年份:2022
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Toward safe, private, and secure home automation: from formal modeling to user evaluation
协作研究:SaTC:核心:中:迈向安全、私密和可靠的家庭自动化:从形式建模到用户评估
- 批准号:
2114074 - 财政年份:2021
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Toward safe, private, and secure home automation: from formal modeling to user evaluation
协作研究:SaTC:核心:中:迈向安全、私密和可靠的家庭自动化:从形式建模到用户评估
- 批准号:
2114148 - 财政年份:2021
- 资助金额:
$ 87.87万 - 项目类别:
Standard Grant