Robust Identification of a Class of Structured Systems with High Dimensional Outputs and Applications
具有高维输出和应用的一类结构化系统的鲁棒识别
基本信息
- 批准号:0901433
- 负责人:
- 金额:$ 41.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research program is to develop a comprehensive framework for robust identification of a class of multidimensional systems arising in diverse domains ranging from image processing to nano-systems. Its transformative impact and novelty reside in recasting problems that require extracting information sparsely encoded in high dimensional data streams as multidimensional systems identification problems, establishing a new connection between dynamical systems theory, image processing and machine learning.Intellectual Merit: Recent exponential growth in sensing capabilities poses a serious challenge to identification theory. Simply put, existing techniques are ill-equipped to deal with the overwhelming volume of data. The present proposal seeks to develop a comprehensive robust modeling (identification, reduction, validation) framework specifically tailored to address this challenge. Advantages over existing techniques include the abilities to directly accommodate structural constraints (such as periodicity), exploit correlations in the data to accomplish substantial dimensionality reduction and exploit recent results in optimization to furnish tractable solutions to problems that challenge current techniques, due to poor scaling properties. Examples (known to be generically NP-hard) are (i) robust identification of piecewise affine hybrid systems, (ii) robust identification of Hammerstein/Wiener systems and (iii) semi-blind (in)validation.Broader Impact: Enhanced data collection and analysis capabilities can profoundly impact society, with benefits ranging from safer, self aware environments, to enhanced image-based therapies. A major impediment to realizing this vision stems from the curse of dimensionality. The proposed research exploits a hidden commonality --underlying dynamical models having a far simpler representation than the dimension of the data-- to recast key problems, e.g. data segmentation, reconstruction and classification, into a tractable form, significantly advancing the state of the art in several domains. Examples include (but are not limited to) biomedical image processing, building safety, nano-systems and aging civil-infrastructure monitoring. Translation of these results to society and the economy will proceed by actively engaging our partners in bio-medical image processing and building security. The proposed research also has the potential for significant cross--fertilization with other branches of engineering and applied mathematics. An example is the connection between nonlinear dimensionality reduction methods and manifold discovery (both hallmarks of machine learning) and nonlinear identification.
该研究计划的目标是开发一个全面的框架,用于对从图像处理到纳米系统等不同领域中产生的一类多维系统进行鲁棒识别。它的变革性的影响和新奇在于重铸的问题,需要提取信息稀疏编码在高维数据流的多维系统识别问题,建立一个新的连接之间的动力系统理论,图像处理和机器learning.Intellectual优点:最近指数增长的传感能力提出了一个严重的挑战,识别理论。 简单地说,现有的技术不足以处理大量的数据。本提案旨在制定一个全面的强大的建模(识别,减少,验证)框架,专门针对这一挑战。与现有技术相比的优点包括直接适应结构约束(例如周期性)的能力,利用数据中的相关性来实现大幅降维,以及利用优化中的最新结果来为挑战当前技术的问题提供易于处理的解决方案,这是由于缩放特性差。例子(已知一般是NP-困难的)是(i)分段仿射混合系统的鲁棒识别,(ii)Hammerstein/Wiener系统的鲁棒识别和(iii)半盲(在)validation.Broader影响:增强的数据收集和分析能力可以深刻地影响社会,从更安全、自我意识的环境到增强的基于图像的治疗。实现这一愿景的一个主要障碍来自维度灾难。 拟议的研究利用了一个隐藏的共性-潜在的动态模型具有比数据维度简单得多的表示-将关键问题(例如数据分割,重建和分类)重新转换为易于处理的形式,显着推进了几个领域的最新技术。例子包括(但不限于)生物医学图像处理,建筑安全,纳米系统和老化的民用基础设施监测。将这些成果转化为社会和经济将通过积极参与我们的合作伙伴在生物医学图像处理和建筑安全。拟议中的研究也有可能显着的交叉-施肥与工程和应用数学的其他分支。 一个例子是非线性降维方法和流形发现(机器学习的两个标志)和非线性识别之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mario Sznaier其他文献
Probabilistic Optimal Estimation and Filtering under Uncertainty
不确定性下的概率最优估计和过滤
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
F. Dabbene;Mario Sznaier;R. Tempo - 通讯作者:
R. Tempo
Data-Driven Safe Control of Discrete-Time Non-Linear Systems
离散时间非线性系统的数据驱动安全控制
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3
- 作者:
Jian Zheng;Jared Miller;Mario Sznaier - 通讯作者:
Mario Sznaier
Risk adjusted output feedback Receding Horizon control of constrained Linear Parameter Varying Systems
约束线性参数变化系统的风险调整输出反馈后退控制
- DOI:
10.23919/ecc.2007.7068641 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Mario Sznaier;C. Lagoa;Necmiye Ozay - 通讯作者:
Necmiye Ozay
Receding horizon: an easy way to improve performance in LPV systems
- DOI:
10.1109/acc.1999.786409 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Mario Sznaier - 通讯作者:
Mario Sznaier
Mario Sznaier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mario Sznaier', 18)}}的其他基金
CPS:Medium: Safe Learning-Enabled Cyberphysical Systems
CPS:中:支持安全学习的网络物理系统
- 批准号:
2038493 - 财政年份:2020
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
Collaborative Research: Data Driven Control of Switched Systems with Applications to Human Behavioral Modification
合作研究:切换系统的数据驱动控制及其在人类行为修正中的应用
- 批准号:
1808381 - 财政年份:2018
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
CPS: Frontier: Collaborative Research: Data-Driven Cyberphysical Systems
CPS:前沿:协作研究:数据驱动的网络物理系统
- 批准号:
1646121 - 财政年份:2017
- 资助金额:
$ 41.53万 - 项目类别:
Continuing Grant
CRISP Type 2: Identification and Control of Uncertain, Highly Interdependent Processes Involving Humans with Applications to Resilient Emergency Health Response
CRISP 类型 2:识别和控制涉及人类的不确定、高度相互依赖的过程及其在弹性紧急健康响应中的应用
- 批准号:
1638234 - 财政年份:2016
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
Robust Identification and Model Validation for a Class of Nonlinear Dynamic Systems and Applications
一类非线性动态系统和应用的鲁棒识别和模型验证
- 批准号:
1404163 - 财政年份:2014
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
Risk Adjusted Robust Control Theory and Applications
风险调整鲁棒控制理论及应用
- 批准号:
0648054 - 财政年份:2006
- 资助金额:
$ 41.53万 - 项目类别:
Continuing Grant
A Systems Theoretic Approach to Robust Active Vision
鲁棒主动视觉的系统理论方法
- 批准号:
0641498 - 财政年份:2006
- 资助金额:
$ 41.53万 - 项目类别:
Continuing Grant
Risk Adjusted Robust Control Theory and Applications
风险调整鲁棒控制理论及应用
- 批准号:
0501166 - 财政年份:2005
- 资助金额:
$ 41.53万 - 项目类别:
Continuing Grant
A Systems Theoretic Approach to Robust Active Vision
鲁棒主动视觉的系统理论方法
- 批准号:
0221562 - 财政年份:2002
- 资助金额:
$ 41.53万 - 项目类别:
Continuing Grant
Robust Control of Constrained Linear Parameter Varying Systems and Applications
约束线性参数变化系统的鲁棒控制及其应用
- 批准号:
0115946 - 财政年份:2001
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
相似国自然基金
相似海外基金
Identification and Estimation of Dynamic Restricted Latent Class Models for Cognitive Diagnosis
用于认知诊断的动态受限潜在类别模型的识别和估计
- 批准号:
2150628 - 财政年份:2022
- 资助金额:
$ 41.53万 - 项目类别:
Continuing Grant
Identification and characterisation of novel ligands presented by the Major Histocompatibility Complex class I-related gene protein (MR1)
主要组织相容性复合体 I 类相关基因蛋白 (MR1) 呈现的新型配体的鉴定和表征
- 批准号:
2594439 - 财政年份:2021
- 资助金额:
$ 41.53万 - 项目类别:
Studentship
Identification of HLA class I molecules with the capacity of mediating lipopeptide presentation
具有介导脂肽呈递能力的 HLA I 类分子的鉴定
- 批准号:
20K21615 - 财政年份:2020
- 资助金额:
$ 41.53万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Identification of first-in-class epigenetic inhibitors that target Thymine DNA Glycosylase (TDG) for future precision therapy of metastatic melanoma
鉴定针对胸腺嘧啶 DNA 糖基化酶 (TDG) 的一流表观遗传抑制剂,用于未来转移性黑色素瘤的精准治疗
- 批准号:
10310527 - 财政年份:2020
- 资助金额:
$ 41.53万 - 项目类别:
Identification of novel MHC class I gene-inducing factors by proteonomics and CROP-seq technology
通过蛋白质组学和 CROP-seq 技术鉴定新型 MHC I 类基因诱导因子
- 批准号:
20K21511 - 财政年份:2020
- 资助金额:
$ 41.53万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Identification of first in class small molecule GFRAL blockers for the prevention and reversal of Cancer Anorexia-Cachexia
鉴定用于预防和逆转癌症厌食-恶病质的一流小分子 GFRAL 阻滞剂
- 批准号:
10091640 - 财政年份:2019
- 资助金额:
$ 41.53万 - 项目类别:
Identification of autoantigens presented by specific HLA class I alleles in aplastic anemia
再生障碍性贫血中特定 HLA I 类等位基因呈现的自身抗原的鉴定
- 批准号:
19H03686 - 财政年份:2019
- 资助金额:
$ 41.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Identification and functional analysis of a novel class of human MHC class I molecules presenting lipopeptide antigens
呈递脂肽抗原的新型人类 MHC I 类分子的鉴定和功能分析
- 批准号:
16K19151 - 财政年份:2016
- 资助金额:
$ 41.53万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Identification of genetic factors in Class II HLA associated with hepatitis B vaccine response
与乙型肝炎疫苗反应相关的 II 类 HLA 遗传因素的鉴定
- 批准号:
16K19629 - 财政年份:2016
- 资助金额:
$ 41.53万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Identification and development of anti-persister compounds as a new class of antibiotics to treat chronic infection
抗持续性化合物的鉴定和开发作为治疗慢性感染的新型抗生素
- 批准号:
15K15128 - 财政年份:2015
- 资助金额:
$ 41.53万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research