Collaborative Research: CPS: Medium: Real-time Criticality-Aware Neural Networks for Mission-critical Cyber-Physical Systems

合作研究:CPS:中:用于关键任务网络物理系统的实时关键性感知神经网络

基本信息

项目摘要

Advances in artificial intelligence (AI) make it clear that intelligent systems will account for the next leap in scientific progress to enable a myriad of future applications that improve the quality of life, contribute to the economy, and enhance societal resilience to a broad spectrum of disruptions. Yet, advances in AI come at a considerable resource costs. To reduce the cost of AI, this project takes inspiration from biological systems. It is well-known that a key bottleneck in AI is the perception subsystem. It is the part that allows AI to perceive and understand its surroundings. Humans are very good at understanding what’s critical in their environment and the human perceptual system automatically focuses limited cognitive resources on those elements of the scene that matter most, saving a significant amount of “brain processing power”. Current AI pipelines do not have a similar mechanism, resulting in significantly higher resource costs. The project refactors data analytics and machine intelligence pipelines to allow for better prioritization of external stimuli leveraging and significantly extending advances in scheduling previously developed in the real-time systems research community. The refactored AI pipeline will improve the efficiency and efficacy of AI-enabled systems, allowing them to be safer and more responsive, while at the same time significantly lowering their cost. If successful, the project will help bring machine intelligence solutions to the benefit of all society. This is achieved through interactions between research, education, and outreach, as well as integration of multiple scientific communities, including (i) researchers on embedded computing who offer platforms and schedulers, (ii) researchers on IoT and networking, and (iii) researchers on intelligent applications and application domain experts. The work is an example of cyber-physical computing research, where a new generation of digital algorithms learn to exploit a better understanding of physical systems in order to improve societal outcomes. The project removes systemic priority inversion from machine intelligence pipelines in modern neural-network-based cyber-physical applications. In general, priority inversion occurs in real-time systems when computations that are less critical (or with longer deadlines) are performed ahead of those that are more critical (or with shorter deadlines). The current state of machine intelligence software suffers from significant priority inversion on the path from perception to decision-making, resulting in vastly inferior system responsiveness to critical events, thereby jeopardizing safety and increasing the cost of hardware to meet application needs. By resolving this problem, this project shall improve system ability to react to critical inputs, while at the same time significantly reducing platform cost. The intellectual merit of the project lies in investigating the intersection of two core areas in cyber-physical computing: (i) data analytics and machine learning and (ii) real-time systems. Specifically, the project refactors data analytics and machine intelligence pipelines to remove priority inversion. Mitigation of priority inversion problems in different systems has been one of the key contributions of the real-time community. Removal of priority inversion from machine intelligence pipelines makes several other scientific contributions. Namely, (i) the refactored AI pipeline improves the efficiency and efficacy of AI-enabled mission-critical systems, (ii) it enables autonomous systems to be more responsive, while lowering their cost, and (iii) it contributes to safety of intelligent systems by ensuring that critical inputs are processed first. The project expects to demonstrate significant improvements in performance of modern machine-learning-based inference protocols, while offering service differentiation that dramatically improves predictability and timeliness of reactions to critical situations. If successful, the project will significantly reduce the cost of deploying machine intelligence solutions in future cyber-physical systems, while improving predictability and temporal guarantees. In addition to delivering the technical contributions of this project, an explicit purpose of the work is to advance education and workforce development on Intelligent CPS topics. This is achieved through interactions between activities for research, education, and broadening participation, as well as integration of multiple communities, including (i) researchers on embedded computing who offer platforms and schedulers, (ii) researchers on IoT and networking, and (iii) researchers on intelligent applications and application domain experts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)的进步清楚地表明,智能系统将成为科学进步的下一个飞跃,以实现无数未来应用,提高生活质量,促进经济发展,并增强社会对各种干扰的适应力。然而,人工智能的进步需要付出相当大的资源成本。为了降低人工智能的成本,该项目从生物系统中汲取灵感。众所周知,人工智能的一个关键瓶颈是感知子系统。它是允许AI感知和理解其周围环境的部分。人类非常善于理解环境中的关键因素,人类的感知系统会自动将有限的认知资源集中在场景中最重要的元素上,从而节省了大量的“大脑处理能力”。目前的人工智能管道没有类似的机制,导致资源成本显着增加。该项目重构了数据分析和机器智能管道,以更好地优先考虑外部刺激,利用并显著扩展了实时系统研究社区先前开发的调度方面的进展。重构后的人工智能管道将提高人工智能系统的效率和功效,使其更加安全和响应速度更快,同时显着降低成本。如果成功,该项目将有助于将机器智能解决方案带给全社会。这是通过研究、教育和外展之间的互动以及多个科学界的整合来实现的,包括(i)提供平台和调度器的嵌入式计算研究人员,(ii)物联网和网络研究人员,以及(iii)研究人员智能应用程序和应用领域专家。这项工作是网络物理计算研究的一个例子,新一代的数字算法学习如何更好地理解物理系统,以改善社会成果。 该项目从现代基于神经网络的网络物理应用中的机器智能管道中删除了系统优先级反转。一般来说,优先级反转发生在实时系统中,当计算不太关键(或具有较长的截止期限)时,优先级反转发生在那些更关键(或具有较短的截止期限)的计算之前。机器智能软件的当前状态在从感知到决策的路径上遭受显著的优先级反转,导致系统对关键事件的响应性大大降低,从而危及安全性并增加满足应用需求的硬件成本。通过解决这个问题,本项目将提高系统对关键输入的反应能力,同时显著降低平台成本。该项目的智力价值在于研究网络物理计算中两个核心领域的交叉点:(i)数据分析和机器学习;(ii)实时系统。具体来说,该项目重构了数据分析和机器智能管道,以消除优先级反转。缓解不同系统中的优先级反转问题一直是实时社区的关键贡献之一。从机器智能管道中删除优先级反转还做出了其他几项科学贡献。也就是说,(i)重构的人工智能管道提高了人工智能支持的关键任务系统的效率和功效,(ii)它使自主系统能够更快地响应,同时降低成本,(iii)它通过确保首先处理关键输入来促进智能系统的安全性。该项目预计将展示现代基于机器学习的推理协议性能的显着改进,同时提供服务差异化,大大提高对关键情况的反应的可预测性和及时性。如果成功,该项目将大大降低在未来网络物理系统中部署机器智能解决方案的成本,同时提高可预测性和时间保证。除了提供该项目的技术贡献外,这项工作的一个明确目的是促进智能CPS主题的教育和劳动力发展。这是通过研究,教育和扩大参与活动之间的互动以及多个社区的整合来实现的,包括(i)提供平台和嵌入式计算的研究人员,(ii)物联网和网络的研究人员,以及(iii)该奖项反映了NSF的法定使命,并被认为是值得支持的,使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-Cueing Real-Time Attention Scheduling in Criticality-Aware Visual Machine Perception
Research Challenges for Combined Autonomy, AI, and Real-Time Assurance
结合自主性、人工智能和实时保证的研究挑战
TwinSync: A Digital Twin Synchronization Protocol for Bandwidth-Limited IoT Applications
  • DOI:
    10.1109/icccn58024.2023.10230154
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deepti Kalasapura;Jinyang Li;Shengzhong Liu;Yizhuo Chen;Ruijie Wang;T. Abdelzaher;Matthew Caesar;Joydeep Bhattacharyya;Jae H. Kim;Guijun Wang;Greg Kimberly;Josh D. Eckhardt;Denis Osipychev
  • 通讯作者:
    Deepti Kalasapura;Jinyang Li;Shengzhong Liu;Yizhuo Chen;Ruijie Wang;T. Abdelzaher;Matthew Caesar;Joydeep Bhattacharyya;Jae H. Kim;Guijun Wang;Greg Kimberly;Josh D. Eckhardt;Denis Osipychev
Underprovisioned GPUs: On Sufficient Capacity for Real-Time Mission-Critical Perception
GPU 资源不足:关于实时关键任务感知的足够容量
  • DOI:
    10.1109/icccn58024.2023.10230127
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hu, Yigong;Gokarn, Ila;Liu, Shengzhong;Misra, Archan;Abdelzaher, Tarek
  • 通讯作者:
    Abdelzaher, Tarek
SudokuSens: Enhancing Deep Learning Robustness for IoT Sensing Applications using a Generative Approach
  • DOI:
    10.1145/3625687.3625785
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianshi Wang;Jinyang Li;Ruijie Wang;Denizhan Kara;Shengzhong Liu;Davis Wertheimer;Antoni Viros-i-Martin;R. Ganti;M. Srivatsa;Tarek F. Abdelzaher
  • 通讯作者:
    Tianshi Wang;Jinyang Li;Ruijie Wang;Denizhan Kara;Shengzhong Liu;Davis Wertheimer;Antoni Viros-i-Martin;R. Ganti;M. Srivatsa;Tarek F. Abdelzaher
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tarek Abdelzaher其他文献

Energy-optimal Batching periods for asynchronous multistage data processing on sensor nodes: foundations and an mPlatform case study
  • DOI:
    10.1007/s11241-011-9138-5
  • 发表时间:
    2011-10-05
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Dong Wang;Tarek Abdelzaher;Bodhi Priyantha;Jie Liu;Feng Zhao
  • 通讯作者:
    Feng Zhao
The bottlenecks of AI: challenges for embedded and real-time research in a data-centric age
  • DOI:
    10.1007/s11241-025-09452-w
  • 发表时间:
    2025-07-06
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Tarek Abdelzaher;Yigong Hu;Denizhan Kara;Tomoyoshi Kimura;Ashitabh Misra;Vishakha Ramani;Olivier Tardieu;Tianshi Wang;Maggie Wigness;Alaa Youssef
  • 通讯作者:
    Alaa Youssef
ClariSense+: An enhanced traffic anomaly explanation service using social network feeds
  • DOI:
    10.1016/j.pmcj.2017.02.007
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Prasanna Giridhar;Md Tanvir Amin;Tarek Abdelzaher;Dong Wang;Lance Kaplan;Jemin George;Raghu Ganti
  • 通讯作者:
    Raghu Ganti
Design, Implementation and Evaluation of a Real-Time Active Content Distribution Service
  • DOI:
    10.1007/s11241-005-0503-0
  • 发表时间:
    2005-05-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Chengdu Huang;Seejo Sebastine;Tarek Abdelzaher
  • 通讯作者:
    Tarek Abdelzaher
System-wide energy optimization for multiple DVS components and real-time tasks
  • DOI:
    10.1007/s11241-011-9125-x
  • 发表时间:
    2011-05-07
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Heechul Yun;Po-Liang Wu;Anshu Arya;Cheolgi Kim;Tarek Abdelzaher;Lui Sha
  • 通讯作者:
    Lui Sha

Tarek Abdelzaher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tarek Abdelzaher', 18)}}的其他基金

CSR: Small: Data Services for Reliable Crowdsensing in Urban Spaces
CSR:小型:城市空间中可靠的群体感知的数据服务
  • 批准号:
    1618627
  • 财政年份:
    2016
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Need-Based Sponsorship of Student Travel to IEEE MASS 2015; October 19-22, 2015; Dallas, TX
基于需求的 IEEE MASS 2015 学生旅行赞助;
  • 批准号:
    1547552
  • 财政年份:
    2015
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
FIA-NP: Collaborative Research: Named Data Networking Next Phase (NDN-NP)
FIA-NP:协作研究:命名数据网络下一阶段 (NDN-NP)
  • 批准号:
    1345266
  • 财政年份:
    2014
  • 资助金额:
    $ 46万
  • 项目类别:
    Cooperative Agreement
CSR: Small: On Modeling Software Dynamics for Feedback Computing
CSR:小:关于反馈计算的软件动态建模
  • 批准号:
    1320209
  • 财政年份:
    2013
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
II-NEW: Vehicular Instrumentation for Green Sensor-Enabled Research
II-新:用于绿色传感器研究的车辆仪器
  • 批准号:
    1059294
  • 财政年份:
    2011
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
II-New: Towards Green Data Centers: A Testbed for Thermo-Computational Dynamics
II-新:迈向绿色数据中心:热计算动力学测试平台
  • 批准号:
    0958314
  • 财政年份:
    2010
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
FIA: Collaborative Research: Named Data Networking (NDN)
FIA:协作研究:命名数据网络 (NDN)
  • 批准号:
    1040380
  • 财政年份:
    2010
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
CPS: Medium: The Ectokernel Approach: A Composition Paradigm for Building Evolvable Safety-critical Systems from Unsafe Components
CPS:中:外内核方法:从不安全组件构建可演化安全关键系统的组合范式
  • 批准号:
    1035736
  • 财政年份:
    2010
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
CSR: Small: Green Farms: Towards a Stable Energy Optimization Architecture for Data Centers
CSR:小型:绿色农场:迈向数据中心稳定的能源优化架构
  • 批准号:
    0916028
  • 财政年份:
    2009
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
NetSE: Medium: A Data Mining Approach to Diagnostic Debugging in Sensor Networks
NetSE:Medium:传感器网络中诊断调试的数据挖掘方法
  • 批准号:
    0905014
  • 财政年份:
    2009
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
  • 批准号:
    2423130
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2414176
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305882
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了