FAI: Fairness in Machine Learning with Human in the Loop
FAI:机器学习中人的参与的公平性
基本信息
- 批准号:2040800
- 负责人:
- 金额:$ 62.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite early successes and significant potential, algorithmic decision-making systems often inherit and encode biases that exist in the training data and/or the training process. It is thus important to understand the consequences of deploying and using machine learning models and provide algorithmic treatments to ensure that such techniques will ultimately serve the social good. While recent works have looked into the fairness issues in AI concerning the “short-term” measures, the long-term consequences and impacts of automated decision making remain unclear. The understanding of the long-term impact of a fair decision provides guidelines to policy-makers when deploying an algorithmic model in a dynamic environment and is critical to its trustworthiness and adoption. It will also drive the design of algorithms with an eye toward the welfare of both the makers and the users of these algorithms, with an ultimate goal of achieving more equitable outcomes. This project aims to understand the long-term impact of fair decisions made by automated machine learning algorithms via establishing an analytical, algorithmic, and experimental framework that captures the sequential learning and decision process, the actions and dynamics of the underlying user population, and its welfare. This knowledge will help design the right fairness criteria and intervention mechanisms throughout the life cycle of the decision-action loop to ensure long-term equitable outcomes. Central to this project’s intellectual inquiry is the focus on human in the loop, i.e., an AI-human feedback loop with automated decision-making that involves human participation. Our focus on the long-term impacts of fair algorithmic decision-making while explicitly modeling and incorporating human agents in the loop provides a theoretically rigorous framework to understand how an algorithmic decision-maker fares in the foreseeable future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管早期的成功和巨大的潜力,算法决策系统往往继承和编码存在于训练数据和/或训练过程中的偏见。 因此,重要的是要了解部署和使用机器学习模型的后果,并提供算法处理,以确保这些技术最终将服务于社会公益。虽然最近的工作已经研究了人工智能中关于“短期”措施的公平性问题,但自动决策的长期后果和影响仍然不清楚。对公平决策的长期影响的理解为政策制定者在动态环境中部署算法模型提供了指导,并且对其可信度和采用至关重要。它还将推动算法的设计,着眼于这些算法的制造者和用户的福利,最终目标是实现更公平的结果。 该项目旨在通过建立一个分析,算法和实验框架来理解自动机器学习算法做出的公平决策的长期影响,该框架捕获顺序学习和决策过程,底层用户群体的行为和动态及其福利。这一知识将有助于在整个决策-行动循环的生命周期中设计正确的公平标准和干预机制,以确保长期公平的结果。该项目的智力调查的核心是关注循环中的人,即,一个人工智能-人类反馈回路,具有涉及人类参与的自动决策。我们专注于公平算法决策的长期影响,同时明确建模并将人类代理纳入循环,这为理解算法决策者在可预见的未来的表现提供了一个理论上严格的框架。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Incentive Mechanisms for Strategic Classification and Regression Problems
战略分类与回归问题的激励机制
- DOI:10.1145/3490486.3538300
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Jin, Kun;Zhang, Xueru;Khalili, Mohammad Mahdi;Naghizadeh, Parinaz;Liu, Mingyan
- 通讯作者:Liu, Mingyan
Adaptive Data Debiasing through Bounded Exploration
通过有限探索进行自适应数据去偏
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yang, Yifan;Liu, Yang;Naghizadeh, Parinaz
- 通讯作者:Naghizadeh, Parinaz
Unintended Selection: Persistent Qualification Rate Disparities and Interventions
意外选择:持续存在的合格率差异和干预措施
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Raab, Reilly;Liu, Yang
- 通讯作者:Liu, Yang
Adaptive Adversarial Training Does Not Increase Recourse Costs
自适应对抗训练不会增加资源成本
- DOI:10.1145/3600211.3604704
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hardy, Ian;Yetukuri, Jayanth;Liu, Yang
- 通讯作者:Liu, Yang
Understanding Instance-Level Label Noise: Disparate Impacts and Treatments
- DOI:
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Yang Liu
- 通讯作者:Yang Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Liu其他文献
Mesenchymal Progenitors Derived from Different Locations in Long Bones Display Diverse Characteristics
来自长骨不同位置的间充质祖细胞表现出不同的特征
- DOI:
10.1155/2019/5037578 - 发表时间:
2019-04 - 期刊:
- 影响因子:4.3
- 作者:
Lu Weiguang;Gao Bo;Fan Jing;Cheng Pengzhen;Hu Yaqian;Jie Qiang;Luo Zhuojing;Yang Liu - 通讯作者:
Yang Liu
Glycosylation of DMP1 promotes bone reconstruction in long bone defects
DMP1 的糖基化促进长骨缺损的骨重建
- DOI:
10.1016/j.bbrc.2020.04.020 - 发表时间:
2020 - 期刊:
- 影响因子:3.1
- 作者:
Hui Xue;Pingping Niu;Yang Liu;Yao Sun - 通讯作者:
Yao Sun
WITHDRAWN: Regular exercise protects aging Drosophila from high-fat-diet-induced locomotor impairment, cardiac dysfunction, lifespan shortening, and Nmnat and dSir2 expression decline.
撤回:定期运动可以保护衰老的果蝇免受高脂肪饮食引起的运动障碍、心脏功能障碍、寿命缩短以及 Nmnat 和 dSir2 表达下降的影响。
- DOI:
10.1016/j.exger.2018.01.017 - 发表时间:
2018 - 期刊:
- 影响因子:3.9
- 作者:
Deng;Lan Zheng;Fan Yang;Han;Jing Chen;Jin;Dan Cheng;Kai Lu;Yang Liu;Xian;Wen - 通讯作者:
Wen
A 0.5-V-supply, 37.8-nW, 17.6-ppm/°C switched-capacitor bandgap reference with second-order curvature compensation
具有二阶曲率补偿功能的 0.5V 电源、37.8nW、17.6ppm/℃ 开关电容器带隙基准
- DOI:
10.1016/j.mejo.2019.02.017 - 发表时间:
2019-05 - 期刊:
- 影响因子:2.2
- 作者:
Yang Liu;Bin Li;Zhaoquan Chen;Zhijian Chen;Mo Huang;Yan Lu - 通讯作者:
Yan Lu
Cobalt and Aluminum Co-Optimized 1T Phase MoS2 with Rich Edges for Robust Hydrogen Evolution Activity
钴和铝协同优化的 1T 相 MoS2,具有丰富的边缘,具有强大的析氢活性
- DOI:
10.1021/acssuschemeng.2c01836 - 发表时间:
2022-07 - 期刊:
- 影响因子:8.4
- 作者:
Jiahuang Jian;Hongjun Kang;Xianshu Qiao;Kai Cui;Yang Liu;Yang Li;Wei Qin;Xiaohong Wu - 通讯作者:
Xiaohong Wu
Yang Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Liu', 18)}}的其他基金
Development of the initial prototype of a pill sensor to detect colonic polyps and early bowel cancer
开发用于检测结肠息肉和早期肠癌的药丸传感器的初始原型
- 批准号:
MR/Y503411/1 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Research Grant
ERI: Understanding the Dynamic and Thermal Behaviors of Colloidal Droplets Toward a Novel Freezing-based Inkjet Printing Concept
ERI:了解胶体液滴的动态和热行为,以实现基于冷冻的新型喷墨打印概念
- 批准号:
2138214 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
ERI: Understanding the Dynamic and Thermal Behaviors of Colloidal Droplets Toward a Novel Freezing-based Inkjet Printing Concept
ERI:了解胶体液滴的动态和热行为,以实现基于冷冻的新型喷墨打印概念
- 批准号:
2242311 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
CAREER: Human-Centered Machine Learning: Robustness, Fairness and Dynamics
职业:以人为本的机器学习:稳健性、公平性和动态性
- 批准号:
2143895 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
When a Micro-Robot Encounters a Bowel Lesion
当微型机器人遇到肠道病变时
- 批准号:
EP/V047868/1 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
Research Grant
Collaborative Research: RI: Small: Wisdom of Crowds with Machines in the Loop
合作研究:RI:小型:循环中机器的群体智慧
- 批准号:
2007951 - 财政年份:2020
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Semi-Parametric Factor Analysis for Item Responses and Response Times
项目响应和响应时间的半参数因子分析
- 批准号:
1826535 - 财政年份:2019
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Utilising the Vibro-Impact Self-Propulsion Technique for Gastrointestinal Endoscopy
利用振动冲击自推进技术进行胃肠内窥镜检查
- 批准号:
EP/R043698/1 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Research Grant
Controlling Multistability in Vibro-Impact Systems: Theory and Experiment
控制振动冲击系统的多稳定性:理论与实验
- 批准号:
EP/P023983/1 - 财政年份:2017
- 资助金额:
$ 62.5万 - 项目类别:
Research Grant
相似海外基金
Excellence in Research:Towards Data and Machine Learning Fairness in Smart Mobility
卓越研究:实现智能移动中的数据和机器学习公平
- 批准号:
2401655 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
AF:RI:Small: Fairness in allocation and machine learning problems: algorithms and solution concepts
AF:RI:Small:分配公平性和机器学习问题:算法和解决方案概念
- 批准号:
2334461 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
CAREER: Exploring and Exploiting Data-Centric Modeling for Fairness in Machine Learning
职业:探索和利用以数据为中心的建模以实现机器学习的公平性
- 批准号:
2239257 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
Causality, Counterfactuals and Meta-learning to Address the Complexity of Fairness in Data Science and Machine Learning
因果关系、反事实和元学习解决数据科学和机器学习中公平性的复杂性
- 批准号:
2751295 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Studentship
Machine learning for the insurance industry: predictive models, fraud detection, and fairness
保险行业的机器学习:预测模型、欺诈检测和公平性
- 批准号:
529584-2018 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Collaborative Research and Development Grants
Algorithmic Fairness in Black-box Machine Learning Models
黑盒机器学习模型中的算法公平性
- 批准号:
RGPIN-2021-04378 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Human-Centered Machine Learning: Robustness, Fairness and Dynamics
职业:以人为本的机器学习:稳健性、公平性和动态性
- 批准号:
2143895 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
Fairness-aware Machine Learing Based on the Modification of Causal Graphs
基于因果图修正的公平感知机器学习
- 批准号:
21H03504 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Machine learning for the insurance industry: predictive models, fraud detection, and fairness
保险行业的机器学习:预测模型、欺诈检测和公平性
- 批准号:
529584-2018 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
Collaborative Research and Development Grants
Algorithmic Fairness in Black-box Machine Learning Models
黑盒机器学习模型中的算法公平性
- 批准号:
DGECR-2021-00457 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
Discovery Launch Supplement