CAREER: Human-Centered Machine Learning: Robustness, Fairness and Dynamics
职业:以人为本的机器学习:稳健性、公平性和动态性
基本信息
- 批准号:2143895
- 负责人:
- 金额:$ 52.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning (ML) is increasingly used in domains that have a profound effect on people's opportunities and well-being, including healthcare, law enforcement, and consumer finance. The emphasis on the role of humans in developing a machine learning system raises significant challenges. Several arise because the data a machine learning model is trained on is, in many contexts, generated from repeated human-ML interactions over time. For example, in a loan-application decision system-support system, after an initial decline a user may change their financial behavior to obtain a better result in future applications. Human behavior changes in response to the ML decisions change the distribution of data that the ML model is exposed to in training. However the usual paradigms for training and use of ML systems often assumes static data distributions. This requires us to revisit existing machine learning tools and our understanding of their established robustness and fairness properties. This project’s focus on robustness, fairness, and human-ML interaction dynamics will alert machine learning practitioners of the irreparable harm that may be caused by blindly trusting existing training data. The project and its future extensions will provide frameworks and tools to build healthy machine learning development and deployment approaches that will much better serve humans in their long-term well-being. This project aims to provide fundamental understandings and algorithmic solutions to improving model robustness and fairness in a human-centered machine learning system. The project builds theoretical and computational frameworks to understand the changes in data induced by the deployment of machine learning models. Central to our intellectual inquiry is that in human-centered systems, humans are "responding" agents who will react to the algorithmic decisions or the interactive environments (e.g., a data collection system) they are subject to. These reactions often cause data distribution to shift between training and deployment, which substantially challenges the commonly made assumption that the training data represents the test ones. The results will help advance the state-of-the-art by providing a theoretically sound and computationally efficient framework for designing robust and fair machine learning solutions that consider distribution shifts triggered by human responses to the algorithms in real-world deployment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)越来越多地用于对人们的机会和福祉产生深远影响的领域,包括医疗保健,执法和消费金融。强调人类在开发机器学习系统中的作用提出了重大挑战。有几个原因是,在许多情况下,机器学习模型训练的数据是随着时间的推移从重复的人类-ML交互中生成的。 例如,在贷款申请决策系统支持系统中,在初始拒绝之后,用户可以改变他们的金融行为以在未来的申请中获得更好的结果。响应于ML决策的人类行为变化改变了ML模型在训练中暴露的数据分布。 然而,训练和使用ML系统的通常范例通常假设静态数据分布。 这要求我们重新审视现有的机器学习工具,以及我们对它们已建立的鲁棒性和公平性的理解。该项目对鲁棒性、公平性和人机交互动态的关注将提醒机器学习从业者盲目信任现有训练数据可能造成的不可弥补的伤害。该项目及其未来的扩展将提供框架和工具,以构建健康的机器学习开发和部署方法,从而更好地为人类的长期福祉服务。该项目旨在提供基本的理解和算法解决方案,以提高以人为中心的机器学习系统中的模型鲁棒性和公平性。该项目建立了理论和计算框架,以了解机器学习模型部署引起的数据变化。我们的智力研究的核心是,在以人为中心的系统中,人类是“响应”的代理人,他们将对算法决策或交互环境做出反应(例如,数据收集系统)。这些反应通常会导致数据分布在训练和部署之间发生变化,这极大地挑战了通常假设的训练数据代表测试数据。该研究结果将有助于推动最先进的技术,为设计强大而公平的机器学习解决方案提供理论上合理且计算效率高的框架,该解决方案考虑了人类对现实世界部署中算法的反应所引发的分布变化。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting Corrupted Labels Without Training a Model to Predict
- DOI:
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Zhaowei Zhu;Zihao Dong;Yang Liu
- 通讯作者:Zhaowei Zhu;Zihao Dong;Yang Liu
To Smooth or Not? When Label Smoothing Meets Noisy Labels
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Jiaheng Wei;Hangyu Liu;Tongliang Liu;Gang Niu;Yang Liu
- 通讯作者:Jiaheng Wei;Hangyu Liu;Tongliang Liu;Gang Niu;Yang Liu
Understanding Instance-Level Impact of Fairness Constraints
- DOI:10.48550/arxiv.2206.15437
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Jialu Wang;X. Wang;Yang Liu
- 通讯作者:Jialu Wang;X. Wang;Yang Liu
Model Transferability with Responsive Decision Subjects
- DOI:
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Yang Liu;Yatong Chen;Zeyu Tang;Kun Zhang
- 通讯作者:Yang Liu;Yatong Chen;Zeyu Tang;Kun Zhang
Estimating Instance-dependent Label-noise Transition Matrix using a Deep Neural Network
使用深度神经网络估计实例相关的标签噪声转移矩阵
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yang, Shuo;Yang, Erkun;Han, Bo;Liu, Yang;Xu, Min;Niu, Gang;Liu, Tongliang
- 通讯作者:Liu, Tongliang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Liu其他文献
Mesenchymal Progenitors Derived from Different Locations in Long Bones Display Diverse Characteristics
来自长骨不同位置的间充质祖细胞表现出不同的特征
- DOI:
10.1155/2019/5037578 - 发表时间:
2019-04 - 期刊:
- 影响因子:4.3
- 作者:
Lu Weiguang;Gao Bo;Fan Jing;Cheng Pengzhen;Hu Yaqian;Jie Qiang;Luo Zhuojing;Yang Liu - 通讯作者:
Yang Liu
Glycosylation of DMP1 promotes bone reconstruction in long bone defects
DMP1 的糖基化促进长骨缺损的骨重建
- DOI:
10.1016/j.bbrc.2020.04.020 - 发表时间:
2020 - 期刊:
- 影响因子:3.1
- 作者:
Hui Xue;Pingping Niu;Yang Liu;Yao Sun - 通讯作者:
Yao Sun
WITHDRAWN: Regular exercise protects aging Drosophila from high-fat-diet-induced locomotor impairment, cardiac dysfunction, lifespan shortening, and Nmnat and dSir2 expression decline.
撤回:定期运动可以保护衰老的果蝇免受高脂肪饮食引起的运动障碍、心脏功能障碍、寿命缩短以及 Nmnat 和 dSir2 表达下降的影响。
- DOI:
10.1016/j.exger.2018.01.017 - 发表时间:
2018 - 期刊:
- 影响因子:3.9
- 作者:
Deng;Lan Zheng;Fan Yang;Han;Jing Chen;Jin;Dan Cheng;Kai Lu;Yang Liu;Xian;Wen - 通讯作者:
Wen
A 0.5-V-supply, 37.8-nW, 17.6-ppm/°C switched-capacitor bandgap reference with second-order curvature compensation
具有二阶曲率补偿功能的 0.5V 电源、37.8nW、17.6ppm/℃ 开关电容器带隙基准
- DOI:
10.1016/j.mejo.2019.02.017 - 发表时间:
2019-05 - 期刊:
- 影响因子:2.2
- 作者:
Yang Liu;Bin Li;Zhaoquan Chen;Zhijian Chen;Mo Huang;Yan Lu - 通讯作者:
Yan Lu
Cobalt and Aluminum Co-Optimized 1T Phase MoS2 with Rich Edges for Robust Hydrogen Evolution Activity
钴和铝协同优化的 1T 相 MoS2,具有丰富的边缘,具有强大的析氢活性
- DOI:
10.1021/acssuschemeng.2c01836 - 发表时间:
2022-07 - 期刊:
- 影响因子:8.4
- 作者:
Jiahuang Jian;Hongjun Kang;Xianshu Qiao;Kai Cui;Yang Liu;Yang Li;Wei Qin;Xiaohong Wu - 通讯作者:
Xiaohong Wu
Yang Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Liu', 18)}}的其他基金
Development of the initial prototype of a pill sensor to detect colonic polyps and early bowel cancer
开发用于检测结肠息肉和早期肠癌的药丸传感器的初始原型
- 批准号:
MR/Y503411/1 - 财政年份:2024
- 资助金额:
$ 52.69万 - 项目类别:
Research Grant
ERI: Understanding the Dynamic and Thermal Behaviors of Colloidal Droplets Toward a Novel Freezing-based Inkjet Printing Concept
ERI:了解胶体液滴的动态和热行为,以实现基于冷冻的新型喷墨打印概念
- 批准号:
2138214 - 财政年份:2022
- 资助金额:
$ 52.69万 - 项目类别:
Standard Grant
ERI: Understanding the Dynamic and Thermal Behaviors of Colloidal Droplets Toward a Novel Freezing-based Inkjet Printing Concept
ERI:了解胶体液滴的动态和热行为,以实现基于冷冻的新型喷墨打印概念
- 批准号:
2242311 - 财政年份:2022
- 资助金额:
$ 52.69万 - 项目类别:
Standard Grant
FAI: Fairness in Machine Learning with Human in the Loop
FAI:机器学习中人的参与的公平性
- 批准号:
2040800 - 财政年份:2021
- 资助金额:
$ 52.69万 - 项目类别:
Standard Grant
When a Micro-Robot Encounters a Bowel Lesion
当微型机器人遇到肠道病变时
- 批准号:
EP/V047868/1 - 财政年份:2021
- 资助金额:
$ 52.69万 - 项目类别:
Research Grant
Collaborative Research: RI: Small: Wisdom of Crowds with Machines in the Loop
合作研究:RI:小型:循环中机器的群体智慧
- 批准号:
2007951 - 财政年份:2020
- 资助金额:
$ 52.69万 - 项目类别:
Standard Grant
Semi-Parametric Factor Analysis for Item Responses and Response Times
项目响应和响应时间的半参数因子分析
- 批准号:
1826535 - 财政年份:2019
- 资助金额:
$ 52.69万 - 项目类别:
Standard Grant
Utilising the Vibro-Impact Self-Propulsion Technique for Gastrointestinal Endoscopy
利用振动冲击自推进技术进行胃肠内窥镜检查
- 批准号:
EP/R043698/1 - 财政年份:2018
- 资助金额:
$ 52.69万 - 项目类别:
Research Grant
Controlling Multistability in Vibro-Impact Systems: Theory and Experiment
控制振动冲击系统的多稳定性:理论与实验
- 批准号:
EP/P023983/1 - 财政年份:2017
- 资助金额:
$ 52.69万 - 项目类别:
Research Grant
相似国自然基金
靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
- 批准号:81960115
- 批准年份:2019
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
- 批准号:61005070
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Foundations of Human-Centered Machine Learning in the Wild
职业:以人为中心的自然机器学习的基础
- 批准号:
2237037 - 财政年份:2023
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
CAREER: Structural and Accountable Behavior Understandings and Human-centered AI Designs with Naturalistic Micromobility Riding Data
职业:结构和负责任的行为理解以及以人为中心的人工智能设计与自然微移动骑行数据
- 批准号:
2239897 - 财政年份:2023
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
CAREER: Resisting Automated Algorithmic Surveillance with Human-centered Adversarial Machine Learning
职业:通过以人为中心的对抗性机器学习来抵抗自动算法监视
- 批准号:
2144988 - 财政年份:2022
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
CAREER: Resisting Automated Algorithmic Surveillance with Human-centered Adversarial Machine Learning
职业:通过以人为中心的对抗性机器学习来抵抗自动算法监视
- 批准号:
2316287 - 财政年份:2022
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
CAREER: Advancing Fair Data Mining via New Robust and Explainable Algorithms and Human-Centered Approaches
职业:通过新的稳健且可解释的算法和以人为本的方法推进公平数据挖掘
- 批准号:
2146091 - 财政年份:2022
- 资助金额:
$ 52.69万 - 项目类别:
Standard Grant
CAREER: Designing Human-Centered Privacy, Security, and Data Ethics for Non-Primary Smart Device Users
职业:为非主要智能设备用户设计以人为本的隐私、安全和数据伦理
- 批准号:
2142795 - 财政年份:2022
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
CAREER: Digital Hospice: Human-Centered Design for Personal Accounts and Data at the End of Life
职业:数字临终关怀:以人为本的临终个人账户和数据设计
- 批准号:
2048244 - 财政年份:2021
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
CAREER: Enabling Trustworthy Speech Technologies for Mental Health Care: From Speech Anonymization to Fair Human-centered Machine Intelligence
职业:为心理健康护理提供值得信赖的语音技术:从语音匿名化到公平的以人为本的机器智能
- 批准号:
2046118 - 财政年份:2021
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
CAREER: Enabling data valuation and deletion in human-centered machine learning
职业:在以人为本的机器学习中实现数据评估和删除
- 批准号:
1942926 - 财政年份:2020
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
CAREER: Improving the Reliability of Human-Centered Secure-Development Research
职业:提高以人为本的安全开发研究的可靠性
- 批准号:
1943215 - 财政年份:2020
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant