FAI: Quantifying and Mitigating Disparities in Language Technologies
FAI:量化和减轻语言技术方面的差异
基本信息
- 批准号:2040926
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in natural language processing (NLP) technology now make it possible to perform many tasks through natural language or over natural language data -- automatic systems can answer questions, perform web search, or command our computers to perform specific tasks. However, ``language'' is not monolithic; people vary in the language they speak, the dialect they use, the relative ease with which they produce language, or the words they choose with which to express themselves. In benchmarking of NLP systems however, this linguistic variety is generally unattested. Most commonly tasks are formulated using canonical American English, designed with little regard for whether systems will work on language of any other variety. In this work we ask a simple question: can we measure the extent to which the diversity of language that we use affects the quality of results that we can expect from language technology systems? This will allow for the development and deployment of fair accuracy measures for a variety of tasks regarding language technology, encouraging advances in the state of the art in these technologies to focus on all, not just a select few.Specifically, this work focuses on four aspects of this overall research question. First, we will develop a general-purpose methodology for quantifying how well particular language technologies work across many varieties of language. Measures over multiple speakers or demographics are combined to benchmarks that can drive progress in development of fair metrics for language systems, tailored to the specific needs of design teams. Second, we will move beyond simple accuracy measures, and directly quantify the effect that the accuracy of systems has on users in terms of relative utility derived from using the system. These measures of utility will be incorporated in our metrics for system success. Third, we focus on the language produced by people from varying demographic groups, predicting system accuracies from demographics. Finally, we will examine novel methods for robust learning of NLP systems across language or dialectal boundaries, and examine the effect that these methods have on increasing accuracy for all users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然语言处理(NLP)技术的进步现在使通过自然语言或通过自然语言数据执行许多任务成为可能--自动系统可以回答问题、执行网络搜索或命令我们的计算机执行特定任务。然而,“语言”并不是一成不变的;人们所说的语言、所使用的方言、产生语言的相对容易程度,或者他们选择用来表达自己的词语,都是不同的。然而,在NLP系统的基准测试中,这种语言变化通常是未经证实的。最常见的任务是使用规范的美式英语来制定的,设计时几乎不考虑系统是否适用于任何其他种类的语言。在这项工作中,我们问了一个简单的问题:我们能否衡量我们使用的语言的多样性在多大程度上影响了我们可以从语言技术系统中预期的结果的质量?这将允许开发和部署与语言技术有关的各种任务的公平准确性衡量标准,鼓励这些技术的最新进展集中在所有方面,而不仅仅是少数几个。具体地说,这项工作集中在这个整体研究问题的四个方面。首先,我们将开发一种通用的方法,用于量化特定的语言技术在许多语言变体中的工作情况。对多个说话者或人口统计数据的测量结合到基准中,这些基准可以推动语言系统的公平指标开发的进展,这些指标是根据设计团队的特定需求量身定做的。其次,我们将超越简单的精度衡量标准,直接根据使用系统得出的相对效用来量化系统精度对用户的影响。这些效用的衡量标准将纳入我们的系统成功衡量标准。第三,我们关注来自不同人口统计群体的人所产生的语言,根据人口统计预测系统的准确性。最后,我们将研究跨越语言或方言边界的NLP系统稳健学习的新方法,并检查这些方法在提高所有用户的准确性方面的效果。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gendered Mental Health Stigma in Masked Language Models
蒙面语言模型中的性别心理健康耻辱
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Inna Wanyin Lin;Lucille Njoo;Anjalie Field;Ashish Sharma;Katharina Reinecke;Tim Althoff;Yulia Tsvetkov
- 通讯作者:Yulia Tsvetkov
Examining risks of racial biases in NLP tools for child protective services
- DOI:10.1145/3593013.3594094
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Anjalie Field;Amanda Coston;Nupoor Gandhi;A. Chouldechova;Emily Putnam-Hornstein;David Steier;Yulia Tsvetkov
- 通讯作者:Anjalie Field;Amanda Coston;Nupoor Gandhi;A. Chouldechova;Emily Putnam-Hornstein;David Steier;Yulia Tsvetkov
SD-QA: Spoken Dialectal Question Answering for the Real World
SD-QA:现实世界的口语方言问答
- DOI:10.18653/v1/2021.findings-emnlp.281
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Faisal, Fahim;Keshava, Sharlina;Alam, Md Mahfuz;Anastasopoulos, Antonios
- 通讯作者:Anastasopoulos, Antonios
Gradient-based Constrained Sampling from Language Models
- DOI:10.18653/v1/2022.emnlp-main.144
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Sachin Kumar;Biswajit Paria;Yulia Tsvetkov
- 通讯作者:Sachin Kumar;Biswajit Paria;Yulia Tsvetkov
Controlled Text Generation as Continuous Optimization with Multiple Constraints
- DOI:
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Sachin Kumar;Eric Malmi;Aliaksei Severyn;Yulia Tsvetkov
- 通讯作者:Sachin Kumar;Eric Malmi;Aliaksei Severyn;Yulia Tsvetkov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graham Neubig其他文献
Articulatory controllable speech modification based on statistical feature mapping with Gaussian mixture models
基于高斯混合模型统计特征映射的发音可控语音修改
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Patrick Lumban Tobing;T. Toda;Graham Neubig;S. Sakti;Satoshi Nakamura;A. Purwarianti - 通讯作者:
A. Purwarianti
Real cohomology groups of the space of nonsingular curves of degree 5 in CP 2
CP 2 中 5 次非奇异曲线空间的实上同调群
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Patrick Lumban Tobing;T. Toda;Graham Neubig;S. Sakti;Satoshi Nakamura;A. Purwarianti - 通讯作者:
A. Purwarianti
Simple , Correct Parallelization for Blocked Gibbs Sampling Graham Neubig November
分块吉布斯采样的简单、正确并行化 Graham Neubig
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Graham Neubig - 通讯作者:
Graham Neubig
Attentive Interaction Model: Modeling Changes in View in Argumentation
注意力交互模型:对论证中观点的变化进行建模
- DOI:
10.18653/v1/n18-1010 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yohan Jo;Shivani Poddar;Byungsoo Jeon;Qinlan Shen;C. Rosé;Graham Neubig - 通讯作者:
Graham Neubig
関連尺度に基づいた負の相関ルール抽出手法の高機能化
基于相关措施改进负关联规则提取方法的功能
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Koichi Akabe;Graham Neubig;Sakriani Sakti;Tomoki Toda;Satoshi Nakamura;宮城 智輝,山本 泰生,岩沼 宏治;Graham Neubig;黒岩 健歩,岩沼 宏治,山本 泰生 - 通讯作者:
黒岩 健歩,岩沼 宏治,山本 泰生
Graham Neubig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graham Neubig', 18)}}的其他基金
Discovering and Demonstrating Linguistic Features for Language Documentation
发现和展示语言文档的语言特征
- 批准号:
1761548 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
SHF: Small: Open-domain, Data-driven Code Synthesis from Natural Language
SHF:小型:开放域、数据驱动的自然语言代码合成
- 批准号:
1815287 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
RI: EAGER: Collaborative Research: Adaptive Heads-up Displays for Simultaneous Interpretation
RI:EAGER:协作研究:用于同声传译的自适应平视显示器
- 批准号:
1748642 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似海外基金
SCH: Quantifying and mitigating demographic biases of machine learning in real world radiology
SCH:量化和减轻现实世界放射学中机器学习的人口统计偏差
- 批准号:
10818941 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
QMIA: Quantifying and Mitigating Bias affecting and induced by AI in Medicine
QMIA:量化和减轻人工智能在医学中影响和诱发的偏差
- 批准号:
MR/X030075/1 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Quantifying the Impact of the Prescribed Burning on Mitigating Wildland Fire Risk
量化规定燃烧对减轻荒地火灾风险的影响
- 批准号:
2230869 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Quantifying and Mitigating Vulnerabilities of Residential Structures to Hurricane Risks in Cuba
量化和减轻古巴住宅结构对飓风风险的脆弱性
- 批准号:
533758-2018 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Quantifying and Mitigating Vulnerabilities of Residential Structures to Hurricane Risks in Cuba
量化和减轻古巴住宅结构对飓风风险的脆弱性
- 批准号:
533758-2018 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Quantifying and mitigating spatio-temporal risks to pollination services caused by climate change
量化和减轻气候变化对授粉服务造成的时空风险
- 批准号:
2267329 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Studentship
Quantifying and mitigating spatio-temporal risks to pollination services caused by climate change
量化和减轻气候变化对授粉服务造成的时空风险
- 批准号:
BB/T508895/1 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Training Grant
Quantifying and Mitigating Vulnerabilities of Residential Structures to Hurricane Risks in Cuba
量化和减轻古巴住宅结构对飓风风险的脆弱性
- 批准号:
533758-2018 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Quantifying and mitigating changes in Australia’s rainfall belts
量化和减轻澳大利亚降雨带的变化
- 批准号:
FT160100029 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
ARC Future Fellowships
Quantifying and mitigating alkali-aggregate reactivity risk in AAROC aggregate resources
量化和减轻 AAROC 骨料资源中的碱骨料反应风险
- 批准号:
477625-2014 - 财政年份:2014
- 资助金额:
$ 37.5万 - 项目类别:
Engage Grants Program