Collaborative Research: Ultrasensitive Nucleic Acid Sensing Tools Based on Cas Assays and Solid-State Nanopores

合作研究:基于Cas检测和固态纳米孔的超灵敏核酸传感工具

基本信息

  • 批准号:
    2041345
  • 负责人:
  • 金额:
    $ 29.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

The urgent need for rapid, inexpensive, and convenient methods to detect viruses has been clearly evidenced by the onset of Covid-19, which caused the death of over 2 million prople worldwide from mid November 2019 to mid January 2021, and continues to take its toll on human life. The 2020 Nobel Prize winning CRISPR/Cas technology, which can be used to rapidly detect DNA sequences in any living organism, offers a promising approach. This approach has been pursued by many companies, but none to date has been able to match the sensitivity of the “gold standard” test (real-time polymerase chain reaction (RT-PCR)), which requires 4-6 hours for completion and costs ~$100 per test. Thus the goal of this project is to develop a method for SARS-CoV-2 (the virus responsible for the COVID-19) detection that is faster, cheaper, more sensitive, and more convenient than the methods presently used for SARS-CoV-2 detection. The project’s goals will be achieved by integrating CRISPR/Cas assays with cutting-edge technologies. Limitations of existing systems will be addressed using a number of advanced analysis tools, advanced devices, artifical inteligence, and novel nanomaterial probes to design an integrated nanopore-microfluidic device for use in point-of-care (POC) settings that is ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end users). Succesful development of this sensor platform will offer a wide range of other uses, as the principles behind it may be applied to other applications that are not related to SARS-CoV-2. The project creates excellent opportunities for interdisciplinary research, as it combines biochemistry, nanoengineering, photonics, and medicine. Outreach programs related to this exciting project will be offered to K-12 schools, attracting young minds and inspiring them to pursue science, technology, engineering and mathematics (STEM) degrees. The goal of this project is to develop a highly sensitive and reliable nucleic acid sensing tool based on CRISPR/Cas assays for SARS-CoV-2 detection. The research will reveal the cleavage activities of Cas enzymes on a variety of composite nanomaterial reporter designs. Solid-state nanopores will be optimized for reading the cleavage patterns of nanomaterial reporters in the Cas assays using a deep neural network to classify the cleavage signatures. Solid-state nanopore readout provides single-molecule quantification and also identifies molecular signatures within the translocating molecules, which has significant advantages over the standard readout methods of today (fluorescence, paper-strip, colorimetric, and electrochemical readout). Once the cleavage activities are understood, a variety of reporters whose cleavage patterns correspond to specific target sequences will be designed. Identification of the cleavage products will enable the development of an integrated nanopore-microfluidic device for use in POC settings that will demonstrate simultaneous nanopore and fluorescence readings of cleavage products in multiplexed CRISPR/Cas assays.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2019冠状病毒病的爆发清楚地证明了对快速、廉价和方便的病毒检测方法的迫切需求,从2019年11月中旬到2021年1月中旬,该病毒在全球造成200多万人死亡,并继续对人类生命造成损失。 2020年获得诺贝尔奖的CRISPR/Cas技术可用于快速检测任何生物体中的DNA序列,提供了一种有前途的方法。 许多公司都采用了这种方法,但迄今为止,没有一家公司能够达到“金标准”测试(实时聚合酶链反应(RT-PCR))的灵敏度,该测试需要4-6小时才能完成,每次测试的成本约为100美元。 因此,该项目的目标是开发一种检测SARS-CoV-2(导致COVID-19的病毒)的方法,该方法比目前用于SARS-CoV-2检测的方法更快,更便宜,更灵敏,更方便。该项目的目标将通过将CRISPR/Cas检测与尖端技术相结合来实现。 现有系统的局限性将使用许多先进的分析工具,先进的设备,人工智能和新型纳米材料探针来解决,以设计一种集成的纳米孔-微流体设备,用于护理点(POC)设置,这是有保证的(负担得起的,敏感的,具体的,用户友好的,快速和强大的,无设备的,并可交付给最终用户)。该传感器平台的成功开发将提供广泛的其他用途,因为其背后的原理可以应用于与SARS-CoV-2无关的其他应用。 该项目为跨学科研究创造了极好的机会,因为它结合了生物化学,纳米工程,光子学和医学。与这个令人兴奋的项目相关的推广计划将提供给K-12学校,吸引年轻人的头脑,并激励他们追求科学,技术,工程和数学(STEM)学位。该项目的目标是开发一种基于CRISPR/Cas检测的高灵敏度和可靠的核酸传感工具,用于SARS-CoV-2检测。该研究将揭示Cas酶对各种复合纳米材料报告分子设计的切割活性。 将使用深度神经网络对固态纳米孔进行优化,以阅读Cas测定中纳米材料报告分子的切割模式,从而对切割特征进行分类。固态纳米孔读出提供单分子定量,并且还识别易位分子内的分子特征,这与当今的标准读出方法(荧光、纸条、比色和电化学读出)相比具有显著优势。一旦了解了切割活性,将设计其切割模式对应于特定靶序列的各种报告物。裂解产物的鉴定将使一个集成的纳米孔-微流体设备的开发,用于POC设置,将展示在多重CRISPR/Cas检测裂解产物的同时纳米孔和荧光读数。该奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational study on the binding of Mango-II RNA aptamer and fluorogen using the polarizable force field AMOEBA.
Molecular weight of hyaluronic acid crosslinked into biomaterial scaffolds affects angiogenic potential.
  • DOI:
    10.1016/j.actbio.2023.08.001
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Joshua Karam;B. Singer;H. Miwa;Limin H Chen;Kajal Maran;Mahdi Hasani;Sarahi Garza;Bianca Onyekwere-B
  • 通讯作者:
    Joshua Karam;B. Singer;H. Miwa;Limin H Chen;Kajal Maran;Mahdi Hasani;Sarahi Garza;Bianca Onyekwere-B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hsin-Chih Yeh其他文献

Correction to: Longitudinal FRET Imaging of Glucose and Lactate Dynamics and Response to Therapy in Breast Cancer Cells
  • DOI:
    10.1007/s11307-021-01676-z
  • 发表时间:
    2021-11-02
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Jianchen Yang;Tessa Davis;Anum S. Kazerouni;Yuan-I. Chen;Meghan J. Bloom;Hsin-Chih Yeh;Thomas E. Yankeelov;John Virostko
  • 通讯作者:
    John Virostko
DNA-Templated Silver Nanoclusters that Fluoresce upon Hybridization
  • DOI:
    10.1016/j.bpj.2012.11.3020
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    James Werner;Jennifer S. Martinez;Jaswinder K. Sharma;Hsin-Chih Yeh
  • 通讯作者:
    Hsin-Chih Yeh
Preoperative ECOG performance status as a predictor of outcomes in upper tract urothelial cancer surgery
  • DOI:
    10.1038/s41598-025-95128-1
  • 发表时间:
    2025-03-26
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Tsung-Mu Yang;I-Hsuan Alan Chen;Chia-Cheng Yu;Chi-Rei Yang;Wen-Chi Chen;Po-Hung Lin;See-Tong Pang;Steven Kuan-Hua Huang;Zhi‐Hao Chen;Jen-Shu Tseng;Wun-Rong Lin;Yao-Chou Tsai;Chih-Chin Yu;Pi-Che Chen;Ian-Seng Cheong;Yuan-Hong Jiang;Chia-Chang Wu;Hsu-Che Huang;Ting-En Tai;Chung-You Tsai;Wei-Yu Lin;Yung-Tai Chen;Richard Chen-Yu Wu;Hsiang-Ying Lee;Hsin-Chih Yeh
  • 通讯作者:
    Hsin-Chih Yeh
Mixed-type paratesticular rhabdomyosarcoma—A case report
  • DOI:
    10.1016/j.kjms.2010.10.002
  • 发表时间:
    2011-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hsiang-Ying Lee;Chia-Chun Tsai;Chun-Hsiung Huang;Wei-Ming Li;Hsin-Chih Yeh;Wen-Jeng Wu;Chii-Jye Wang;Yii-Her Chou;Chun-Chieh Wu; 李香瑩; 蔡嘉駿; 黃俊雄; 李威明; 葉信志; 吳文正; 王起杰; 周以和; 吳俊杰
  • 通讯作者:
    吳俊杰
Ketomimetic nutrients remodel the glycocalyx and trigger a metabolic defense in breast cancer cells
  • DOI:
    10.1186/s40170-025-00385-3
  • 发表时间:
    2025-04-09
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Mohini Kamra;Yuan-I Chen;Paula C. Delgado;Erin H. Seeley;Stephanie K. Seidlits;Hsin-Chih Yeh;Amy Brock;Sapun H. Parekh
  • 通讯作者:
    Sapun H. Parekh

Hsin-Chih Yeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hsin-Chih Yeh', 18)}}的其他基金

DREAM Sentinels: Selection of aptamers that target viral variants with high specificity
DREAM Sentinels:选择高特异性针对病毒变体的适体
  • 批准号:
    2235455
  • 财政年份:
    2023
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
Studying interactions among metal nanoclusters, host ligands and small-molecule analytes
研究金属纳米团簇、主体配体和小分子分析物之间的相互作用
  • 批准号:
    2029266
  • 财政年份:
    2021
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
Engineering Silver Clusters for Molecular Measurement
用于分子测量的工程银簇
  • 批准号:
    1611451
  • 财政年份:
    2016
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Ultrasensitive Nucleic Acid Sensing Tools Based on Cas Assays and Solid-State Nanopores
合作研究:基于Cas检测和固态纳米孔的超灵敏核酸传感工具
  • 批准号:
    2041340
  • 财政年份:
    2021
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
  • 批准号:
    2031242
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
  • 批准号:
    2031276
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
  • 批准号:
    2103025
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Ultrasensitive frequency domain spectrometer for high throughput bacteria detection in floodwater
EAGER:协作研究:用于洪水中高通量细菌检测的超灵敏频域光谱仪
  • 批准号:
    1760404
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: An Enzyme-free Amplification Technique for Ultrasensitive ELISA of Disease Biomarkers
合作研究:疾病生物标志物超灵敏 ELISA 的无酶扩增技术
  • 批准号:
    1804742
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Ultrasensitive frequency domain spectrometer for high throughput bacteria detection in floodwater
EAGER:协作研究:用于洪水中高通量细菌检测的超灵敏频域光谱仪
  • 批准号:
    1760500
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: An Enzyme-free Amplification Technique for Ultrasensitive ELISA of Disease Biomarkers
合作研究:疾病生物标志物超灵敏 ELISA 的无酶扩增技术
  • 批准号:
    1804525
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Ultrasensitive Cancer Biomarker Detection on Biophotonic Chips
合作研究:生物光子芯片上的超灵敏癌症生物标志物检测
  • 批准号:
    1159423
  • 财政年份:
    2012
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Ultrasensitive Cancer Biomarker Detection on Biophotonic Chips
合作研究:生物光子芯片上的超灵敏癌症生物标志物检测
  • 批准号:
    1159453
  • 财政年份:
    2012
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了