Collaborative Research: Ultrasensitive Nucleic Acid Sensing Tools Based on Cas Assays and Solid-State Nanopores

合作研究:基于Cas检测和固态纳米孔的超灵敏核酸传感工具

基本信息

  • 批准号:
    2041340
  • 负责人:
  • 金额:
    $ 27.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

The urgent need for rapid, inexpensive, and convenient methods to detect viruses has been clearly evidenced by the onset of Covid-19, which caused the death of over 2 million prople worldwide from mid November 2019 to mid January 2021, and continues to take its toll on human life. The 2020 Nobel Prize winning CRISPR/Cas technology, which can be used to rapidly detect DNA sequences in any living organism, offers a promising approach. This approach has been pursued by many companies, but none to date has been able to match the sensitivity of the “gold standard” test (real-time polymerase chain reaction (RT-PCR)), which requires 4-6 hours for completion and costs ~$100 per test. Thus the goal of this project is to develop a method for SARS-CoV-2 (the virus responsible for COVID-19) detection that is faster, cheaper, more sensitive, and more convenient than the methods presently used for SARS-CoV-2 detection. The project’s goals will be achieved by integrating CRISPR/Cas assays with cutting-edge technologies. Limitations of existing systems will be addressed using a number of advanced analysis tools, advanced devices, artifical inteligence, and novel nanomaterial probes to design an integrated nanopore-microfluidic device for use in point-of-care (POC) settings that is ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end users). Succesful development of this sensor platform will offer a wide range of other uses, as the principles behind it may be applied to other applications that are not related to SARS-CoV-2. The project creates excellent opportunities for interdisciplinary research, as it combines biochemistry, nanoengineering, photonics, and medicine. Outreach programs related to this exciting project will be offered to K-12 schools, attracting young minds and inspiring them to pursue science, technology, engineering and mathematics (STEM) degrees. The goal of this project is to develop a highly sensitive and reliable nucleic acid sensing tool based on CRISPR/Cas assays for SARS-CoV-2 detection. The research will reveal the cleavage activities of Cas enzymes on a variety of composite nanomaterial reporter designs. Solid-state nanopores will be optimized for reading the cleavage patterns of nanomaterial reporters in the Cas assays using a deep neural network to classify the cleavage signatures. Solid-state nanopore readout provides single-molecule quantification and also identifies molecular signatures within the translocating molecules, which has significant advantages over the standard readout methods of today (fluorescence, paper-strip, colorimetric, and electrochemical readout). Once the cleavage activities are understood, a variety of reporters whose cleavage patterns correspond to specific target sequences will be designed. Identification of the cleavage products will enable the development of an integrated nanopore-microfluidic device for use in POC settings that will demonstrate simultaneous nanopore and fluorescence readings of cleavage products in multiplexed CRISPR/Cas assays.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Covid-19 的爆发清楚地证明了对快速、廉价且方便的病毒检测方法的迫切需要,从 2019 年 11 月中旬到 2021 年 1 月中旬,Covid-19 导致全球超过 200 万人死亡,并继续对人类造成生命损失。 荣获 2020 年诺贝尔奖的 CRISPR/Cas 技术可用于快速检测任何生物体中的 DNA 序列,提供了一种有前景的方法。 许多公司都在采用这种方法,但迄今为止还没有一家公司能够与“金标准”测试(实时聚合酶链式反应 (RT-PCR))的灵敏度相媲美,该测试需要 4-6 小时才能完成,每次测试的成本约为 100 美元。 因此,该项目的目标是开发一种比目前用于 SARS-CoV-2 检测的方法更快、更便宜、更灵敏、更方便的 SARS-CoV-2(导致 COVID-19 的病毒)检测方法。该项目的目标将通过将 CRISPR/Cas 检测与尖端技术相结合来实现。 将使用许多先进的分析工具、先进的设备、人工智能和新型纳米材料探针来解决现有系统的局限性,设计一种集成的纳米孔微流体装置,用于护理点 (POC) 设置,该装置是 ASSURED(经济实惠、灵敏、特异、用户友好、快速且稳健、无需设备且可交付给最终用户)。该传感器平台的成功开发将提供广泛的其他用途,因为其背后的原理可能适用于与 SARS-CoV-2 无关的其他应用。 该项目结合了生物化学、纳米工程、光子学和医学,为跨学科研究创造了绝佳的机会。与这一令人兴奋的项目相关的外展计划将向 K-12 学校提供,吸引年轻人并激励他们攻读科学、技术、工程和数学 (STEM) 学位。该项目的目标是开发一种基于 CRISPR/Cas 检测的高度灵敏且可靠的核酸传感工具,用于 SARS-CoV-2 检测。该研究将揭示 Cas 酶对多种复合纳米材料报告基因设计的裂解活性。 固态纳米孔将被优化,用于在 Cas 测定中读取纳米材料报告基因的裂解模式,使用深度神经网络对裂解特征进行分类。固态纳米孔读数提供单分子定量,还可以识别易位分子内的分子特征,这比当今的标准读数方法(荧光、纸条、比色和电化学读数)具有显着优势。一旦了解了切割活性,就会设计出其切割模式与特定靶序列相对应的各种报告基因。裂解产物的鉴定将有助于开发用于 POC 设置的集成纳米孔-微流体装置,该装置将在多重 CRISPR/Cas 测定中展示裂解产物的同步纳米孔和荧光读数。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MinJun Kim其他文献

Investigating the single-molecule interactions of heparin and FGF-1 proteins using solid-state nanopore
  • DOI:
    10.1016/j.bpj.2023.11.1002
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Navod Thyashan;Madhav L. Ghimire;MinJun Kim
  • 通讯作者:
    MinJun Kim
Protein Unfolding and Stability Measurement using a Solid-State Nanopore
  • DOI:
    10.1016/j.bpj.2011.11.2352
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Kevin Freedman;Anmiv Prabhu;Per Jemth;Joshua Edel;MinJun Kim
  • 通讯作者:
    MinJun Kim
Electrokinetic transport phenomena in solid-state nanopores: dynamics of protein and DNA translocations
  • DOI:
    10.1016/j.bpj.2021.11.2841
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Jugal Saharia;Ahmet Ata Ersoy;Olivia Nalley;Y.M. Nuwan D.Y. Bandara;MinJun Kim
  • 通讯作者:
    MinJun Kim

MinJun Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MinJun Kim', 18)}}的其他基金

Collaborative Research: Magnetically-Controlled Modules with Reconfigurable Self-Assembly and Disassembly
合作研究:具有可重构自组装和拆卸功能的磁控模块
  • 批准号:
    2130775
  • 财政年份:
    2022
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
NSF-BSF: Modeling and Control of Collective Dynamics for Externally Driven Planar Microswimmers
NSF-BSF:外部驱动平面微型游泳器集体动力学的建模和控制
  • 批准号:
    2123824
  • 财政年份:
    2021
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
Collaborative Research: A Stacked Plasmonic Nanopore for Tether-Free Stretching and Label-Free Sensing of hSTf Dynamics and Complex Formation at Ultra-Low Concentrations
合作研究:堆叠式等离子体纳米孔,用于超低浓度下 hSTf 动力学和复杂形成的无绳拉伸和无标记传感
  • 批准号:
    2022374
  • 财政年份:
    2020
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlled Investigation of Micro- and Nanoscale Contact Interactions Between Microbes and Biomaterials Using Artificial Bacteria
合作研究:使用人造细菌对微生物与生物材料之间的微米和纳米尺度接触相互作用进行受控研究
  • 批准号:
    1761060
  • 财政年份:
    2018
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Integrated Bionanomaterials Characterization and Imaging System for Research and Education Initiatives in Bioengineering
MRI:获取集成生物纳米材料表征和成像系统,用于生物工程研究和教育计划
  • 批准号:
    1827831
  • 财政年份:
    2018
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
3D Motion and Swarm Control of Magnetically Propelled Microrobots for in vivo Particulate Drug Delivery
用于体内颗粒药物输送的磁力驱动微型机器人的 3D 运动和群体控制
  • 批准号:
    1634726
  • 财政年份:
    2016
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Bacterial Flagellar Forests: Designing a Biomaterial for Bio-Enabled Sensing and Actuation
合作研究:细菌鞭毛森林:设计用于生物传感和驱动的生物材料
  • 批准号:
    1712061
  • 财政年份:
    2016
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantitative Analysis of Liposome Deformation at Nanoscale Using Resistive Pulse Sensing in Solid State Nanopores
合作研究:利用固态纳米孔中的电阻脉冲传感对纳米尺度脂质体变形进行定量分析
  • 批准号:
    1712069
  • 财政年份:
    2016
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Micro-Assembly Exploiting SofT RObotics (MAESTRO)
RI:小型:协作研究:微装配开发软机器人 (MAESTRO)
  • 批准号:
    1617949
  • 财政年份:
    2016
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Continuing Grant
RI: Small: Collaborative Research: Micro-Assembly Exploiting SofT RObotics (MAESTRO)
RI:小型:协作研究:微装配开发软机器人 (MAESTRO)
  • 批准号:
    1712088
  • 财政年份:
    2016
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Ultrasensitive Nucleic Acid Sensing Tools Based on Cas Assays and Solid-State Nanopores
合作研究:基于Cas检测和固态纳米孔的超灵敏核酸传感工具
  • 批准号:
    2041345
  • 财政年份:
    2021
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
  • 批准号:
    2031242
  • 财政年份:
    2020
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
  • 批准号:
    2031276
  • 财政年份:
    2020
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
  • 批准号:
    2103025
  • 财政年份:
    2020
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Ultrasensitive frequency domain spectrometer for high throughput bacteria detection in floodwater
EAGER:协作研究:用于洪水中高通量细菌检测的超灵敏频域光谱仪
  • 批准号:
    1760404
  • 财政年份:
    2018
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
Collaborative Research: An Enzyme-free Amplification Technique for Ultrasensitive ELISA of Disease Biomarkers
合作研究:疾病生物标志物超灵敏 ELISA 的无酶扩增技术
  • 批准号:
    1804742
  • 财政年份:
    2018
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Ultrasensitive frequency domain spectrometer for high throughput bacteria detection in floodwater
EAGER:协作研究:用于洪水中高通量细菌检测的超灵敏频域光谱仪
  • 批准号:
    1760500
  • 财政年份:
    2018
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
Collaborative Research: An Enzyme-free Amplification Technique for Ultrasensitive ELISA of Disease Biomarkers
合作研究:疾病生物标志物超灵敏 ELISA 的无酶扩增技术
  • 批准号:
    1804525
  • 财政年份:
    2018
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Ultrasensitive Cancer Biomarker Detection on Biophotonic Chips
合作研究:生物光子芯片上的超灵敏癌症生物标志物检测
  • 批准号:
    1159423
  • 财政年份:
    2012
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Ultrasensitive Cancer Biomarker Detection on Biophotonic Chips
合作研究:生物光子芯片上的超灵敏癌症生物标志物检测
  • 批准号:
    1159453
  • 财政年份:
    2012
  • 资助金额:
    $ 27.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了