Enumerative Geometry of Hitchin Systems and Topological Quantum Field Theory

希钦系统的枚举几何与拓扑量子场论

基本信息

项目摘要

This award supports research in mathematical physics. The topological and geometric structures of various kinds of spaces have captivated mathematicians and physicists for many years. The current proposal lies at the interface between algebra, geometry, combinatorics and analysis with applications to 2D-topological quantum field theory. In recent years the PI has organized several workshops that have specifically facilitated interactions between different research communities. The PI will continue to promote interactions between enumerative geometry, algebra and the theory of quantization in the direction emphasized in this project.The proposed project is aimed at understanding a new point of view utilizing edge contraction operations of ribbon graphs. These operations were originally used to give a recursion relation of the generalized Catalan numbers of arbitrary genus. This recursion implies the DVV formula for the intersection numbers of tautological cotangent classes on the moduli space of stable pointed curves. The PI and a collaborator have discovered, an alternative axiomatic formulation for 2D-topological quantum field theory by edge contraction operations of ribbon graphs. The set of rules based on edge contractions also represent the key structure of topological recursion. The edge contraction axioms reflect both the structure of a Frobenius algebra and the pair of pants decomposition of a topological surface. The pair of pants decomposition of a punctured Riemann surface was first used by Mirzakhani to give a recursion of Weil-Petersson volumes of the moduli space of hyperbolic surfaces with geodesic boundary components of fixed lengths. Using the multiplication and comultiplication of the Frobenius algebra we aim at giving alternative axiomatic definition of cohomological field theories in the same way. The goal of this project is to study the interplay between topological recursion, Mirzakhani recursion of Weil-Petersson volumes, the classification theorem of CohFT for semi-simple Frobenius algebra and character varieties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持数学物理方面的研究。多年来,各种空间的拓扑和几何结构一直吸引着数学家和物理学家。目前的建议存在于代数、几何、组合学和分析之间的界面上,并应用于二维拓扑量子场论。近年来,国际和平研究所组织了几个讲习班,专门促进不同研究界之间的互动。PI将继续在本项目强调的方向上促进计数几何、代数和量子化理论之间的互动。拟议的项目旨在利用带状图的边收缩操作来理解新的观点。这些运算最初被用来给出任意亏格的广义加泰罗尼亚数的递推关系。这个递推蕴含了稳定的点曲线的模空间上重言余切类的交数的DVV公式。PI和一位合作者通过带状图的边收缩操作发现了2D拓扑量子场论的另一种公理形式。基于边收缩的规则集也代表了拓扑递归的关键结构。边收缩公理既反映了Frobenius代数的结构,又反映了拓扑曲面的裤子分解对。由Mirzakhani首先利用穿孔黎曼曲面的裤子分解,给出了具有固定长度测地边界分量的双曲曲面模空间的Weil-Petersson体积的递推公式。利用Frobenius代数的乘法和余法,我们的目的是以同样的方式给出上同调场理论的另一种公理定义。这个项目的目标是研究拓扑递归、Weil-Petersson卷的Mirzakhani递归、半单Frobenius代数的CohFT分类定理和特征标变量之间的相互作用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olivia Dumitrescu其他文献

On linear systems of $$\mathbb {P}^3$$ with nine base points
  • DOI:
    10.1007/s10231-015-0528-5
  • 发表时间:
    2015-09-04
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Maria Chiara Brambilla;Olivia Dumitrescu;Elisa Postinghel
  • 通讯作者:
    Elisa Postinghel
On Segre's bound for fat points in $\mathbb{P}^n$
关于 $mathbb{P}^n$ 中 Segre 的胖点界限
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Ballico;Olivia Dumitrescu;Elisa Postinghel
  • 通讯作者:
    Elisa Postinghel
Emptiness of homogeneous linear systems with ten general base points
具有十个通用基点的齐次线性系统的空性
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Ciliberto;Olivia Dumitrescu;R. Miranda;J. Ro'e
  • 通讯作者:
    J. Ro'e
Plane Curves with Prescribed Triple Points: A Toric Approach
具有指定三点的平面曲线:环面方法
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olivia Dumitrescu
  • 通讯作者:
    Olivia Dumitrescu
On divisorial (i) classes
关于除数 (i) 类
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olivia Dumitrescu;Nathan Priddis
  • 通讯作者:
    Nathan Priddis

Olivia Dumitrescu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olivia Dumitrescu', 18)}}的其他基金

Enumerative Geometry of Hitchin Systems and Topological Quantum Field Theory
希钦系统的枚举几何与拓扑量子场论
  • 批准号:
    1802082
  • 财政年份:
    2018
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Standard Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Research Grant
Computational Tropical Geometry and its Applications
计算热带几何及其应用
  • 批准号:
    MR/Y003888/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Fellowship
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Standard Grant
Discrete Geometry and Convexity
离散几何和凸性
  • 批准号:
    2349045
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Fellowship Award
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了