EAGER: Interpreting Black-Box Predictive Models Through Causal Attribution
EAGER:通过因果归因解释黑盒预测模型
基本信息
- 批准号:2041759
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our ability to acquire and annotate increasingly large amounts of data together with rapid advances in machine learning have made predictive models trained using machine learning ubiquitous in virtually all areas of human endeavor. In high-stakes applications such as healthcare, finance, criminal justice, scientific discovery, education, and others, the resulting predictive models are complex, and in many cases, black-boxes. Consider for example, a medical decision making scenario where a predictive model, e.g., a deep neural network, trained on a large database of labeled data, is to assist physicians in diagnosing patients. In this setting, it is important that the clinical decision support system be able to explain the output of the deep neural network to the physician, who may not have a deep understanding of machine learning. For example, the physician might want to understand the subset of patient characteristics that contribute to the diagnosis; or the reason as to why diagnoses were different for two different patients, etc. In high stakes applications of machine learning, the ability to explain the machine learned model is a prerequisite for establishing trust in the model’s predictions. Satisfactory explanations have to provide answers to questions such as: "What features of the input are responsible for the predictions?"; "Why are the model’s outputs different for two individuals?" (e.g., Why did John’s loan application get approved when Sarah’s was not?). Hence, satisfactory explanations have to be fundamentally causal in nature. This project will develop a theoretically sound, yet practical approach to causal attribution, that is, apportioning the responsibility for a black-box predictive model’s outputs among the model’s inputs.The model interpretation question "Why did the predictive model generate the output Y for input X?" will be reduced to the following equivalent question: "How are the features of the model input X causally related to the model output Y?" In other words, the task of interpreting a black-box predictive model is reduced to the task of estimating, from observations of the inputs and the corresponding outputs of the model, the causal effect of each input variable or feature on the output variable. The planned methods do not require knowledge of the internal structure or parameters of the black-box model, or of the objective function or the algorithm used to train the model. Hence, the resulting methods can be applied, in principle, to any black-box predictive model, so long as it is possible probe the model and observe the model’s response to any supplied input data sample. Advances in causal attribution methods will help broaden the application of machine learned black-box predictive models in high-stakes applications across many areas of human endeavor. The project offers enhanced opportunities for research-based training of graduate and undergraduate students in Informatics, Data Sciences, and Artificial Intelligence. The investigator will develop a new course on Foundations and Applications of Causal Inference as well as modules on Causal Attribution that for possible inclusion in undergraduate and graduate courses in Machine Learning. The broad and free dissemination of open source library of causal attribution methods, course materials, data, research results will ease their adoption and use by AI researchers, educators, and practitioners.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们获取和注释越来越多的大量数据的能力,加上机器学习的快速进步,使得使用机器学习训练的预测模型几乎在人类工作的所有领域无处不在。在医疗保健、金融、刑事司法、科学发现、教育等高风险应用中,由此产生的预测模型是复杂的,在许多情况下是黑盒。例如,考虑医疗决策场景,其中在标签数据的大型数据库上训练的预测模型(例如,深度神经网络)将帮助医生诊断患者。在这种情况下,重要的是临床决策支持系统能够向医生解释深度神经网络的输出,因为医生可能对机器学习没有深入的理解。例如,医生可能想要了解有助于诊断的患者特征子集;或者两个不同患者的诊断不同的原因等。在机器学习的高风险应用中,解释机器学习模型的能力是建立对模型预测的信任的先决条件。令人满意的解释必须提供对以下问题的答案:“输入的哪些特征对预测负责?”;“为什么模型的输出对两个人来说是不同的?”(例如,为什么John的贷款申请获得批准,而Sarah的申请没有获得批准?)因此,令人满意的解释在本质上必须是因果关系。这个项目将开发一种理论上合理但实用的因果归因方法,即在模型的输入中分配黑盒预测模型输出的责任。模型解释问题是:为什么预测模型产生输入X的输出Y?将简化为以下等价问题:“模型输入X的特征与模型输出Y有何因果关系?”换句话说,解释黑盒预测模型的任务被简化为根据对模型的输入和相应输出的观察来估计每个输入变量或特征对输出变量的因果影响的任务。计划中的方法不需要了解黑盒模型的内部结构或参数,也不需要了解用于训练模型的目标函数或算法。因此,所得到的方法原则上可以应用于任何黑盒预测模型,只要有可能探测该模型并观察该模型对所提供的任何输入数据样本的响应。因果归因方法的进步将有助于扩大机器学习的黑盒预测模型在人类努力的许多领域的高风险应用中的应用。该项目为信息学、数据科学和人工智能方面的研究生和本科生提供了更多的研究性培训机会。研究人员将开发一门关于因果推理的基础和应用的新课程,以及关于因果归因的模块,以便可能包括在机器学习的本科生和研究生课程中。开放源码库的广泛和免费传播因果归因方法、课程材料、数据和研究结果将使人工智能研究人员、教育工作者和实践者更容易采用和使用它们。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Explainable Multivariate Time Series Classification: A Deep Neural Network Which Learns to Attend to Important Variables As Well As Time Intervals
- DOI:10.1145/3437963.3441815
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Tsung-Yu Hsieh;Suhang Wang;Yiwei Sun
- 通讯作者:Tsung-Yu Hsieh;Suhang Wang;Yiwei Sun
Variational Graph Auto-Encoders for Heterogeneous Information Network
异构信息网络的变分图自动编码器
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Abhishek Dalvi, Ayan Acharya
- 通讯作者:Abhishek Dalvi, Ayan Acharya
SrVARM: State Regularized Vector Autoregressive Model for Joint Learning of Hidden State Transitions and State-Dependent Inter-Variable Dependencies from Multi-variate Time Series
SrVARM:状态正则化向量自回归模型,用于联合学习多变量时间序列中的隐藏状态转换和状态相关变量间依赖性
- DOI:10.1145/3442381.3450116
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Hsieh, Tsung-Yu;Sun, Yiwei;Tang, Xianfeng;Wang, Suhang;Honavar, Vasant G.
- 通讯作者:Honavar, Vasant G.
Functional Autoencoders for Functional Data Representation Learning
- DOI:10.1137/1.9781611976700.75
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Tsung-Yu Hsieh;Yiwei Sun;Suhang Wang;Vasant G Honavar
- 通讯作者:Tsung-Yu Hsieh;Yiwei Sun;Suhang Wang;Vasant G Honavar
A Causal Lens for Peeking into Black Box Predictive Models: Predictive Model Interpretation via Causal Attribution
用于窥探黑盒预测模型的因果镜头:通过因果归因进行预测模型解释
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Khademi, Aria;Honavar, Vasant
- 通讯作者:Honavar, Vasant
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vasant Honavar其他文献
Neural network design and the complexity of learning, by J. Stephen Judd. Cambridge, MA: MIT Press, 1990
- DOI:
10.1007/bf00993255 - 发表时间:
1992-06-01 - 期刊:
- 影响因子:2.900
- 作者:
Vasant Honavar - 通讯作者:
Vasant Honavar
Machine-learning guided biophysical model development: application to ribosome catalysis
- DOI:
10.1016/j.bpj.2021.11.2053 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Yang Jiang;Justin Petucci;Nishant Soni;Vasant Honavar;Edward O'Brien - 通讯作者:
Edward O'Brien
Book Review:Neural Network Design and the Complexity of Learning, by J. Stephen Judd. Cambridge, MA: MIT Press, 1990
- DOI:
10.1023/a:1022680813848 - 发表时间:
1992-06-01 - 期刊:
- 影响因子:2.900
- 作者:
Vasant Honavar - 通讯作者:
Vasant Honavar
Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach
- DOI:
10.1186/1471-2105-8-284 - 发表时间:
2007-08-03 - 期刊:
- 影响因子:3.300
- 作者:
Carson Andorf;Drena Dobbs;Vasant Honavar - 通讯作者:
Vasant Honavar
A practical guide to machine learning interatomic potentials – Status and future
机器学习原子间势的实用指南——现状与未来
- DOI:
10.1016/j.cossms.2025.101214 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:13.400
- 作者:
Ryan Jacobs;Dane Morgan;Siamak Attarian;Jun Meng;Chen Shen;Zhenghao Wu;Clare Yijia Xie;Julia H. Yang;Nongnuch Artrith;Ben Blaiszik;Gerbrand Ceder;Kamal Choudhary;Gabor Csanyi;Ekin Dogus Cubuk;Bowen Deng;Ralf Drautz;Xiang Fu;Jonathan Godwin;Vasant Honavar;Olexandr Isayev;Brandon M. Wood - 通讯作者:
Brandon M. Wood
Vasant Honavar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vasant Honavar', 18)}}的其他基金
Collaborative Research: RI: III: SHF: Small: Multi-Stakeholder Decision Making: Qualitative Preference Languages, Interactive Reasoning, and Explanation
协作研究:RI:III:SHF:小型:多利益相关者决策:定性偏好语言、交互式推理和解释
- 批准号:
2225824 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
III: Small: Predictive Modeling from High-Dimensional, Sparsely and Irregularly Sampled, Longitudinal Data
III:小:根据高维、稀疏和不规则采样的纵向数据进行预测建模
- 批准号:
2226025 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
AI Institute: Planning: Institute for AI-Enabled Materials Discovery, Design, and Synthesis
人工智能研究所:规划:人工智能材料发现、设计和合成研究所
- 批准号:
2020243 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
- 批准号:
1636795 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Towards a Computational Infrastructure for Analysis of Sensitive Data
EAGER:建立用于分析敏感数据的计算基础设施
- 批准号:
1551843 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SHF:Large:Collaborative Research: Inferring Software Specifications from Open Source Repositories by Leveraging Data and Collective Community Expertise
SHF:大型:协作研究:利用数据和集体社区专业知识从开源存储库推断软件规范
- 批准号:
1518732 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SGER: Exploratory Investigation of Modular Ontology Languages
SGER:模块化本体语言的探索性研究
- 批准号:
0639230 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
ITR: Algorithms and Software for Knowledge Acquisition from Heterogeneous Distributed Data
ITR:从异构分布式数据获取知识的算法和软件
- 批准号:
0219699 - 财政年份:2002
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
RIA: Constructive Neural Network Learning Algorithms for Pattern Classification
RIA:用于模式分类的构造性神经网络学习算法
- 批准号:
9409580 - 财政年份:1994
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
Interpreting services for Australian Aboriginal languages
澳大利亚原住民语言口译服务
- 批准号:
DE240100719 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Discovery Early Career Researcher Award
The Possibility of Simmel's Theory of Sociability as a Form of Knowledge: Renewing the History of Sociology in the German-Speaking World and Interpreting its Contemporary Significance.
齐美尔的社交理论作为一种知识形式的可能性:更新德语世界的社会学史并解释其当代意义。
- 批准号:
23KJ1558 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for JSPS Fellows
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Re-interpreting convict transportation: Decolonising the convict transportation exhibition at the National Justice Museum, Nottingham
重新解读囚犯运输:诺丁汉国家司法博物馆的囚犯运输展览去殖民化
- 批准号:
2893545 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Studentship
Interpreting Functional Cochlear Implant Outcomes for Individual Patients
解读个体患者的功能性人工耳蜗植入结果
- 批准号:
10734815 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
eMB: New Approaches for Interpreting Neural Responses to Behaviorally-Relevant Sensory Stimuli
eMB:解释对行为相关感官刺激的神经反应的新方法
- 批准号:
2324962 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Interpreting Bone Morphogenetic Protein Gradients in Vertebrate Development
解释脊椎动物发育中的骨形态发生蛋白梯度
- 批准号:
10677094 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Analyzing and Interpreting PRO-CTCAE with CTCAE and Other Clinical Data to Characterize Drug Tolerability
使用 CTCAE 和其他临床数据分析和解释 PRO-CTCAE,以表征药物耐受性
- 批准号:
10884103 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Machine learning methods for interpreting spatial multi-omics data
用于解释空间多组学数据的机器学习方法
- 批准号:
10585386 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Developing a data-driven, real-time electron microscopy method toward interpreting plastic deformation and fracture mechanisms of structural materials in sub-microscopic level.
开发一种数据驱动的实时电子显微镜方法,以解释亚微观水平结构材料的塑性变形和断裂机制。
- 批准号:
23H00238 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (A)














{{item.name}}会员




