Collaborative Research: RI: III: SHF: Small: Multi-Stakeholder Decision Making: Qualitative Preference Languages, Interactive Reasoning, and Explanation
协作研究:RI:III:SHF:小型:多利益相关者决策:定性偏好语言、交互式推理和解释
基本信息
- 批准号:2225824
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The ability to express and reason about preferences over a set of alternatives is central to rational decision-making in a broad range of applications, such as product design, public policy, health care, information security, and privacy, among others. Because of the lack of quantitative preferences in many practical settings, there is increasing interest in methods for representing and reasoning with qualitative preferences. Furthermore, practical decision making scenarios typically involve multiple stakeholders, with possibly conflicting preferences, and the preferences of some stakeholders may sometimes override those of others, e.g., because of the relative positions of the stakeholders within an organization. However, existing preference languages and methods are limited to the single stakeholder setting. Against this background, this project brings together a team of researchers with complementary expertise in formal methods, artificial intelligence, and preference reasoning to develop methods and tools for representing and reasoning with multi-stakeholder preferences. The practical open-source multi-stakeholder decision support tools resulting from the project will significantly lower the barrier to the applications of AI and formal methods for multi-stakeholder decision making in a number of domains. The project enhances research-based training of graduate and undergraduate students, including females and members of other under-represented groups, at ISU and PSU in artificial intelligence, formal methods, and related areas of national importance. Broad dissemination of research results (including publications, open source software, data, tutorials, course materials), incorporation of research results into undergraduate and graduate curricula in Computer Science, Information Sciences and Technology, Data Sciences, and related disciplines, and outreach to targeted application domains e.g., health, public policy, security and privacy, that would benefit from advanced tools for multi-stakeholder decision-making further enhance the broader impacts of the project.The primary intellectual merit of the project centers around substantial advances in the current state-of-the-art in languages, algorithms, and software for multi-stakeholder representation and reasoning with preferences. The researchers will develop Generalized Conditional Relative Importance and Preference Theory (GCRIPT), an expressive language for multi-stakeholder preference representation that subsumes existing preference languages. The resulting preference reasoners will be able to (a) analyze preferences expressed in GCRIPT, (b) reason with the preferences of multiple stakeholders, taking into account not only their individual preferences, but also hierarchies that give precedence to the preferences of some stakeholders over those of others, and (c) offer easy-to-understand explanations of the preferred choices as well as their impacts on the stakeholders. The project will also enhance the underlying model checking techniques that form the core technology for the preference reasoning framework; e.g., in the areas of incremental model checking, counter-example analysis and justification. The resulting advances in knowledge representation and formal methods contribute to AI systems that substantially augment and extend human capabilities in multi-stakeholder decision making.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在产品设计、公共政策、医疗保健、信息安全和隐私等广泛的应用中,表达和推理对一组备选方案的偏好的能力是理性决策的核心。由于在许多实际环境中缺乏定量偏好,人们对定性偏好的表示和推理方法越来越感兴趣。此外,实际的决策制定场景通常涉及多个利益相关者,这些利益相关者可能具有相互冲突的偏好,并且某些利益相关者的偏好有时可能会凌驾于其他利益相关者的偏好之上,例如,因为利益相关者在组织内的相对位置。然而,现有的偏好语言和方法仅限于单一利益攸关方环境。在此背景下,该项目汇集了一个研究人员团队,他们在正式方法,人工智能和偏好推理方面具有互补的专业知识,以开发用于表示和推理多利益相关者偏好的方法和工具。该项目产生的实用开源多利益相关者决策支持工具将大大降低人工智能和多利益相关者决策的正式方法在许多领域的应用障碍。该项目加强了对研究生和本科生的研究培训,包括女性和其他代表性不足的群体的成员,在ISU和PSU的人工智能,正式方法和国家重要的相关领域。广泛传播研究成果(包括出版物、开源软件、数据、教程、课程材料),将研究成果纳入计算机科学、信息科学和技术、数据科学及相关学科的本科生和研究生课程,并推广到目标应用领域,例如,健康、公共政策、安全和隐私,将受益于先进的多利益相关者决策工具,进一步增强项目的更广泛影响。该项目的主要智力价值围绕着当前最先进的语言、算法和软件的实质性进步,用于多利益相关者的代表和推理。研究人员将开发广义条件相对重要性和偏好理论(GCRIPT),这是一种用于多利益相关者偏好表示的表达语言,包含现有的偏好语言。由此产生的偏好推理器将能够(a)分析GCRIPT中表达的偏好,(B)对多个利益相关者的偏好进行推理,不仅考虑他们的个人偏好,还考虑优先于某些利益相关者的偏好的层次结构,以及(c)提供易于理解的首选选择解释以及它们对利益相关者的影响。该项目还将加强构成偏好推理框架核心技术的基本模型检查技术;例如,在增量模型检查、反例分析和论证方面。由此产生的知识表示和形式化方法的进步有助于人工智能系统,大大增强和扩展了人类在多利益相关者决策中的能力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Representing and Reasoning with Multi-Stakeholder Qualitative Preference Queries
通过多利益相关者定性偏好查询进行表示和推理
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Basu, Samik;Honavar, Vasant;Santhanam, Ganesh R;Tao, Jia
- 通讯作者:Tao, Jia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vasant Honavar其他文献
Neural network design and the complexity of learning, by J. Stephen Judd. Cambridge, MA: MIT Press, 1990
- DOI:
10.1007/bf00993255 - 发表时间:
1992-06-01 - 期刊:
- 影响因子:2.900
- 作者:
Vasant Honavar - 通讯作者:
Vasant Honavar
Machine-learning guided biophysical model development: application to ribosome catalysis
- DOI:
10.1016/j.bpj.2021.11.2053 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Yang Jiang;Justin Petucci;Nishant Soni;Vasant Honavar;Edward O'Brien - 通讯作者:
Edward O'Brien
Book Review:Neural Network Design and the Complexity of Learning, by J. Stephen Judd. Cambridge, MA: MIT Press, 1990
- DOI:
10.1023/a:1022680813848 - 发表时间:
1992-06-01 - 期刊:
- 影响因子:2.900
- 作者:
Vasant Honavar - 通讯作者:
Vasant Honavar
Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach
- DOI:
10.1186/1471-2105-8-284 - 发表时间:
2007-08-03 - 期刊:
- 影响因子:3.300
- 作者:
Carson Andorf;Drena Dobbs;Vasant Honavar - 通讯作者:
Vasant Honavar
A practical guide to machine learning interatomic potentials – Status and future
机器学习原子间势的实用指南——现状与未来
- DOI:
10.1016/j.cossms.2025.101214 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:13.400
- 作者:
Ryan Jacobs;Dane Morgan;Siamak Attarian;Jun Meng;Chen Shen;Zhenghao Wu;Clare Yijia Xie;Julia H. Yang;Nongnuch Artrith;Ben Blaiszik;Gerbrand Ceder;Kamal Choudhary;Gabor Csanyi;Ekin Dogus Cubuk;Bowen Deng;Ralf Drautz;Xiang Fu;Jonathan Godwin;Vasant Honavar;Olexandr Isayev;Brandon M. Wood - 通讯作者:
Brandon M. Wood
Vasant Honavar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vasant Honavar', 18)}}的其他基金
III: Small: Predictive Modeling from High-Dimensional, Sparsely and Irregularly Sampled, Longitudinal Data
III:小:根据高维、稀疏和不规则采样的纵向数据进行预测建模
- 批准号:
2226025 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
AI Institute: Planning: Institute for AI-Enabled Materials Discovery, Design, and Synthesis
人工智能研究所:规划:人工智能材料发现、设计和合成研究所
- 批准号:
2020243 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Interpreting Black-Box Predictive Models Through Causal Attribution
EAGER:通过因果归因解释黑盒预测模型
- 批准号:
2041759 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
- 批准号:
1636795 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Towards a Computational Infrastructure for Analysis of Sensitive Data
EAGER:建立用于分析敏感数据的计算基础设施
- 批准号:
1551843 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SHF:Large:Collaborative Research: Inferring Software Specifications from Open Source Repositories by Leveraging Data and Collective Community Expertise
SHF:大型:协作研究:利用数据和集体社区专业知识从开源存储库推断软件规范
- 批准号:
1518732 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SGER: Exploratory Investigation of Modular Ontology Languages
SGER:模块化本体语言的探索性研究
- 批准号:
0639230 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ITR: Algorithms and Software for Knowledge Acquisition from Heterogeneous Distributed Data
ITR:从异构分布式数据获取知识的算法和软件
- 批准号:
0219699 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
RIA: Constructive Neural Network Learning Algorithms for Pattern Classification
RIA:用于模式分类的构造性神经网络学习算法
- 批准号:
9409580 - 财政年份:1994
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232055 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant