SHF:Large:Collaborative Research: Inferring Software Specifications from Open Source Repositories by Leveraging Data and Collective Community Expertise

SHF:大型:协作研究:利用数据和集体社区专业知识从开源存储库推断软件规范

基本信息

  • 批准号:
    1518732
  • 负责人:
  • 金额:
    $ 31.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Today individuals, society, and the nation critically depend on software to manage critical infrastructures for power, banking and finance, air traffic control, telecommunication, transportation, national defense, and healthcare. Specifications are critical for communicating the intended behavior of software systems to software developers and users and to make it possible for automated tools to verify whether a given piece of software indeed behaves as intended. Safety critical applications have traditionally enjoyed the benefits of such specifications, but at a great cost. Because producing useful, non-trivial specifications from scratch is too hard, time consuming, and requires expertise that is not broadly available, such specifications are largely unavailable. The lack of specifications for core libraries and widely used frameworks makes specifying applications that use them even more difficult. The absence of precise, comprehensible, and efficiently verifiable specifications is a major hurdle to developing software systems that are reliable, secure, and easy to maintain and reuse. This project brings together an interdisciplinary team of researchers with complementary expertise in formal methods, software engineering, machine learning and big data analytics to develop automated or semi-automated methods for inferring the specifications from code. The resulting methods and tools combine analytics over large open source code repositories to augment and improve upon specifications by program analysis-based specification inference through synergistic advances across both these areas. The broader impacts of the project include: transformative advances in specification inference and synthesis, with the potential to dramatically reduce, the cost of developing and maintaining high assurance software; enhanced interdisciplinary expertise at the intersection of formal methods software engineering, and big data analytics; Contributions to research-based training of a cadre of scientists and engineers with expertise in high assurance software.
如今,个人、社会和国家严重依赖软件来管理电力、银行和金融、空中交通管制、电信、交通、国防和医疗保健等关键基础设施。规范对于将软件系统的预期行为传达给软件开发人员和用户至关重要,并使自动化工具能够验证给定的软件是否确实按预期运行。安全关键型应用历来享有此类规范的好处,但成本高昂。 因为从头开始生成有用的、重要的规范太困难、耗时,并且需要不广泛可用的专业知识,所以这样的规范在很大程度上是不可用的。由于缺乏核心库和广泛使用的框架的规范,使得指定使用它们的应用程序变得更加困难。缺乏精确、可理解且可有效验证的规范是开发可靠、安全且易于维护和重用的软件系统的主要障碍。该项目汇集了一个跨学科的研究人员团队,他们在形式方法、软件工程、机器学习和大数据分析方面具有互补的专业知识,以开发从代码推断规范的自动化或半自动化方法。由此产生的方法和工具结合了对大型开源代码存储库的分析,通过跨这两个领域的协同进步,通过基于程序分析的规范推断来增强和改进规范。该项目更广泛的影响包括:规范推断和综合方面的变革性进步,有可能大幅降低开发和维护高保证软件的成本;增强形式方法软件工程和大数据分析交叉领域的跨学科专业知识;为对具有高保证软件专业知识的科学家和工程师骨干人员进行基于研究的培训做出贡献。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
iScore: a novel graph kernel-based function for scoring protein-protein docking models
  • DOI:
    10.1093/bioinformatics/btz496
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Geng, Cunliang;Jung, Yong;Xue, Li C.
  • 通讯作者:
    Xue, Li C.
Top-N-Rank: A Scalable List-wise Ranking Method for Recommender Systems
MEGAN: A Generative Adversarial Network for Multi-View Network Embedding
  • DOI:
    10.24963/ijcai.2019/489
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiwei Sun;Suhang Wang;Tsung-Yu Hsieh;Xianfeng Tang;Vasant G Honavar
  • 通讯作者:
    Yiwei Sun;Suhang Wang;Tsung-Yu Hsieh;Xianfeng Tang;Vasant G Honavar
Multi-view Network Embedding via Graph Factorization Clustering and Co-regularized Multi-view Agreement
Towards robust relational causal discovery
迈向稳健的关系因果发现
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vasant Honavar其他文献

Neural network design and the complexity of learning, by J. Stephen Judd. Cambridge, MA: MIT Press, 1990
  • DOI:
    10.1007/bf00993255
  • 发表时间:
    1992-06-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Vasant Honavar
  • 通讯作者:
    Vasant Honavar
Machine-learning guided biophysical model development: application to ribosome catalysis
  • DOI:
    10.1016/j.bpj.2021.11.2053
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Yang Jiang;Justin Petucci;Nishant Soni;Vasant Honavar;Edward O'Brien
  • 通讯作者:
    Edward O'Brien
Book Review:Neural Network Design and the Complexity of Learning, by J. Stephen Judd. Cambridge, MA: MIT Press, 1990
  • DOI:
    10.1023/a:1022680813848
  • 发表时间:
    1992-06-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Vasant Honavar
  • 通讯作者:
    Vasant Honavar
Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach
  • DOI:
    10.1186/1471-2105-8-284
  • 发表时间:
    2007-08-03
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Carson Andorf;Drena Dobbs;Vasant Honavar
  • 通讯作者:
    Vasant Honavar
A practical guide to machine learning interatomic potentials – Status and future
机器学习原子间势的实用指南——现状与未来
  • DOI:
    10.1016/j.cossms.2025.101214
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    13.400
  • 作者:
    Ryan Jacobs;Dane Morgan;Siamak Attarian;Jun Meng;Chen Shen;Zhenghao Wu;Clare Yijia Xie;Julia H. Yang;Nongnuch Artrith;Ben Blaiszik;Gerbrand Ceder;Kamal Choudhary;Gabor Csanyi;Ekin Dogus Cubuk;Bowen Deng;Ralf Drautz;Xiang Fu;Jonathan Godwin;Vasant Honavar;Olexandr Isayev;Brandon M. Wood
  • 通讯作者:
    Brandon M. Wood

Vasant Honavar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vasant Honavar', 18)}}的其他基金

Collaborative Research: RI: III: SHF: Small: Multi-Stakeholder Decision Making: Qualitative Preference Languages, Interactive Reasoning, and Explanation
协作研究:RI:III:SHF:小型:多利益相关者决策:定性偏好语言、交互式推理和解释
  • 批准号:
    2225824
  • 财政年份:
    2022
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
III: Small: Predictive Modeling from High-Dimensional, Sparsely and Irregularly Sampled, Longitudinal Data
III:小:根据高维、稀疏和不规则采样的纵向数据进行预测建模
  • 批准号:
    2226025
  • 财政年份:
    2022
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
AI Institute: Planning: Institute for AI-Enabled Materials Discovery, Design, and Synthesis
人工智能研究所:规划:人工智能材料发现、设计和合成研究所
  • 批准号:
    2020243
  • 财政年份:
    2020
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
EAGER: Interpreting Black-Box Predictive Models Through Causal Attribution
EAGER:通过因果归因解释黑盒预测模型
  • 批准号:
    2041759
  • 财政年份:
    2020
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636795
  • 财政年份:
    2017
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
EAGER: Towards a Computational Infrastructure for Analysis of Sensitive Data
EAGER:建立用于分析敏感数据的计算基础设施
  • 批准号:
    1551843
  • 财政年份:
    2015
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
SGER: Exploratory Investigation of Modular Ontology Languages
SGER:模块化本体语言的探索性研究
  • 批准号:
    0639230
  • 财政年份:
    2006
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
ITR: Algorithms and Software for Knowledge Acquisition from Heterogeneous Distributed Data
ITR:从异构分布式数据获取知识的算法和软件
  • 批准号:
    0219699
  • 财政年份:
    2002
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Continuing Grant
RIA: Constructive Neural Network Learning Algorithms for Pattern Classification
RIA:用于模式分类的构造性神经网络学习算法
  • 批准号:
    9409580
  • 财政年份:
    1994
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
  • 批准号:
    1832985
  • 财政年份:
    2018
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Continuing Grant
SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems
SHF:大型:协作研究:利用新兴 HPC 系统的异构性、层次结构和并发性的下一代通信机制
  • 批准号:
    1565336
  • 财政年份:
    2016
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems
SHF:大型:协作研究:利用新兴 HPC 系统的异构性、层次结构和并发性的下一代通信机制
  • 批准号:
    1565414
  • 财政年份:
    2016
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
SHF: Large: Collaborative Research: Exploiting the Naturalness of Software
SHF:大型:协作研究:利用软件的自然性
  • 批准号:
    1723215
  • 财政年份:
    2016
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Continuing Grant
SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems
SHF:大型:协作研究:利用新兴 HPC 系统的异构性、层次结构和并发性的下一代通信机制
  • 批准号:
    1565431
  • 财政年份:
    2016
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Standard Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
  • 批准号:
    1518715
  • 财政年份:
    2015
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Continuing Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
  • 批准号:
    1518833
  • 财政年份:
    2015
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了