ITR: Algorithms and Software for Knowledge Acquisition from Heterogeneous Distributed Data

ITR:从异构分布式数据获取知识的算法和软件

基本信息

  • 批准号:
    0219699
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-15 至 2006-12-31
  • 项目状态:
    已结题

项目摘要

Development of high throughput data acquisition technologies together with advances in computing, and communications have resulted in an explosive growth in the number, size, and diversity of potentially useful information sources. However, the massive size, heterogeneity, autonomy, and distributed nature of the data repositories present significant hurdles in extracting knowledge from this data. This research seeks to overcome these hurdles through the design, analysis, and implementation of:a) Efficient distributed and cumulative learning algorithms with provable performance guarantees (relative to their centralized or batch counterparts) for knowledge acquisition from distributed data sources;b) Customizable information extraction agents that can effectively exploit domain or context-specific ontologies supplied by the users to extract the information needed for learning (e.g., statistics) from distributed data sources despite differences in query capabilities, interfaces, ontologies, and access restrictions to facilitate analysis of heterogeneous distributed data from different perspectives.c) INDUS - a test-bed for knowledge acquisition from heterogeneous distributed data in computational molecular biology (e.g., characterization of protein sequence-structure-function relationships using diverse sources of biological data).The resulting algorithms and software can accelerate, potentially by an order of magnitude, the rate of scientific
高吞吐量数据采集技术的发展以及计算和通信的进步已经导致潜在有用信息源的数量、大小和多样性的爆炸性增长。然而,数据存储库的巨大规模、异构性、自治性和分布式性质给从这些数据中提取知识带来了重大障碍。本研究旨在通过设计、分析和实现以下内容来克服这些障碍:a)有效的分布式和累积学习算法,具有可证明的性能保证(相对于其集中式或批处理算法),用于从分布式数据源获取知识;B)可定制的信息提取代理,可以有效地利用用户提供的领域或上下文特定本体来提取学习所需的信息(例如,统计),以便于从不同的视角分析异质分布式数据。c)INDUS -用于从计算分子生物学中的异质分布式数据获取知识的测试平台(例如,使用不同来源的生物学数据表征蛋白质序列-结构-功能关系)。由此产生的算法和软件可以加速,可能是一个数量级,

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vasant Honavar其他文献

Neural network design and the complexity of learning, by J. Stephen Judd. Cambridge, MA: MIT Press, 1990
  • DOI:
    10.1007/bf00993255
  • 发表时间:
    1992-06-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Vasant Honavar
  • 通讯作者:
    Vasant Honavar
Machine-learning guided biophysical model development: application to ribosome catalysis
  • DOI:
    10.1016/j.bpj.2021.11.2053
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Yang Jiang;Justin Petucci;Nishant Soni;Vasant Honavar;Edward O'Brien
  • 通讯作者:
    Edward O'Brien
Book Review:Neural Network Design and the Complexity of Learning, by J. Stephen Judd. Cambridge, MA: MIT Press, 1990
  • DOI:
    10.1023/a:1022680813848
  • 发表时间:
    1992-06-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Vasant Honavar
  • 通讯作者:
    Vasant Honavar
Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach
  • DOI:
    10.1186/1471-2105-8-284
  • 发表时间:
    2007-08-03
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Carson Andorf;Drena Dobbs;Vasant Honavar
  • 通讯作者:
    Vasant Honavar
A practical guide to machine learning interatomic potentials – Status and future
机器学习原子间势的实用指南——现状与未来
  • DOI:
    10.1016/j.cossms.2025.101214
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    13.400
  • 作者:
    Ryan Jacobs;Dane Morgan;Siamak Attarian;Jun Meng;Chen Shen;Zhenghao Wu;Clare Yijia Xie;Julia H. Yang;Nongnuch Artrith;Ben Blaiszik;Gerbrand Ceder;Kamal Choudhary;Gabor Csanyi;Ekin Dogus Cubuk;Bowen Deng;Ralf Drautz;Xiang Fu;Jonathan Godwin;Vasant Honavar;Olexandr Isayev;Brandon M. Wood
  • 通讯作者:
    Brandon M. Wood

Vasant Honavar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vasant Honavar', 18)}}的其他基金

Collaborative Research: RI: III: SHF: Small: Multi-Stakeholder Decision Making: Qualitative Preference Languages, Interactive Reasoning, and Explanation
协作研究:RI:III:SHF:小型:多利益相关者决策:定性偏好语言、交互式推理和解释
  • 批准号:
    2225824
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III: Small: Predictive Modeling from High-Dimensional, Sparsely and Irregularly Sampled, Longitudinal Data
III:小:根据高维、稀疏和不规则采样的纵向数据进行预测建模
  • 批准号:
    2226025
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
AI Institute: Planning: Institute for AI-Enabled Materials Discovery, Design, and Synthesis
人工智能研究所:规划:人工智能材料发现、设计和合成研究所
  • 批准号:
    2020243
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Interpreting Black-Box Predictive Models Through Causal Attribution
EAGER:通过因果归因解释黑盒预测模型
  • 批准号:
    2041759
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636795
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Towards a Computational Infrastructure for Analysis of Sensitive Data
EAGER:建立用于分析敏感数据的计算基础设施
  • 批准号:
    1551843
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SHF:Large:Collaborative Research: Inferring Software Specifications from Open Source Repositories by Leveraging Data and Collective Community Expertise
SHF:大型:协作研究:利用数据和集体社区专业知识从开源存储库推断软件规范
  • 批准号:
    1518732
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SGER: Exploratory Investigation of Modular Ontology Languages
SGER:模块化本体语言的探索性研究
  • 批准号:
    0639230
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RIA: Constructive Neural Network Learning Algorithms for Pattern Classification
RIA:用于模式分类的构造性神经网络学习算法
  • 批准号:
    9409580
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
  • 批准号:
    2327456
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
OAC Core: High Performance Computing Algorithms and Software for large-scale Mass Spectrometry based Omics
OAC Core:基于大规模质谱组学的高性能计算算法和软件
  • 批准号:
    2312599
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
  • 批准号:
    2238424
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2348306
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms, algorithms and software for design and analysis of genome perturbation experiments
职业:用于设计和分析基因组扰动实验的分子机制、算法和软件
  • 批准号:
    2238831
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Software and algorithms for enabling noise-aware quantum computation on near-term devices
用于在近期设备上实现噪声感知量子计算的软件和算法
  • 批准号:
    DGECR-2022-00405
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Software and algorithms for enabling noise-aware quantum computation on near-term devices
用于在近期设备上实现噪声感知量子计算的软件和算法
  • 批准号:
    RGPIN-2022-04609
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
New Polynomial GCD and Factorization Algorithms and Software for Maple
Maple 的新多项式 GCD 和因式分解算法和软件
  • 批准号:
    576162-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Quantum Software and Algorithms
量子软件和算法
  • 批准号:
    CRC-2021-00206
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Canada Research Chairs
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217003
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了