CAREER: Developing efficient and scalable bioinformatics methods and databases to analyze the adaptive immune repertoires of vertebrate species

职业:开发高效且可扩展的生物信息学方法和数据库来分析脊椎动物的适应性免疫库

基本信息

  • 批准号:
    2041984
  • 负责人:
  • 金额:
    $ 74.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Recent advances in high-throughput technologies have led to the broad applicability of immunogenomics in studying the adaptive immune repertoire. These technologies are capable of generating large-scale datasets that can be used across a wide range of biological domains, including immunology. The project will provide systematics computational resources for understanding the mechanisms and evolution of adaptive immune systems. This will be achieved by delivering robust and easy-to-use open-source software as well as empirical results in form of easy-to-use databases assembled by applying proposed bioinformatics methods on diverse and large-scale genomic datasets. The project will facilitate collaborations across disciplines and will bring together researchers and students from computer science, life science, and bioinformatics, leading to stronger interactions across these communities. Additionally, the project will develop an interactive educational platform for learning and training in big data analytic techniques using python-based interactive notebooks. The online platform will be specifically tailored towards students with limited prior exposure to computational sciences. The platform will be made available at the national level for faculty and students enrolled at teaching-focused institutions. The project will develop efficient and scalable bioinformatics methods for improving current V(D)J reference databases and characterizing T and B cell receptor repertoire across a variety of vertebrate species. Specifically, the project will develop 1) robust and scalable methods to assemble V(D)J alleles from next-generation sequencing data, 2) accurate and robust species- and strain-specific methods to assemble B and T cell receptor repertoire from next-generation sequencing data. Additionally, the project will enrich existing immunogenomics databases of V(D)J alleles and receptor sequences across various vertebrate species by applying the developed methods across hundreds of thousands of samples. To promote the dissemination of obtained results, the assembled immune receptor sequences will be shared as an easy-to-use database with a rich set of functionalities. The developed database will allow life science researchers to systematically compare somatic events that give rise to receptor variation in vertebrate species and provide novel insight into the evolution of adaptive immunity. Results of the project can be found at https://github.com/Mangul-Lab-USC/immune-repertoires-vertebrate-species.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高通量技术的最新进展使免疫基因组学在研究获得性免疫谱系方面具有广泛的适用性。这些技术能够生成可用于包括免疫学在内的广泛生物领域的大规模数据集。该项目将为理解适应性免疫系统的机制和进化提供系统学计算资源。这将通过提供强大和易于使用的开源软件以及以易于使用的数据库的形式提供经验结果来实现,这些数据库是通过对各种和大规模的基因组数据集应用拟议的生物信息学方法汇编而成的。该项目将促进跨学科的合作,并将计算机科学、生命科学和生物信息学的研究人员和学生聚集在一起,导致这些社区之间更强的互动。此外,该项目将开发一个互动教育平台,使用基于Python的互动笔记本学习和培训大数据分析技术。这个在线平台将专门为以前接触计算科学的学生量身定做。该平台将在国家层面上提供给在以教学为重点的机构注册的教师和学生。该项目将开发高效和可扩展的生物信息学方法,以改进目前的V(D)J参考数据库,并表征各种脊椎动物的T和B细胞受体谱系。具体地说,该项目将开发1)稳健和可扩展的方法,从下一代测序数据组装V(D)J等位基因;2)准确和稳健的方法,根据下一代测序数据组装B和T细胞受体谱系。此外,该项目将通过将开发的方法应用于数十万个样本来丰富各种脊椎动物物种的V(D)J等位基因和受体序列的现有免疫基因组学数据库。为了促进已有成果的传播,组装的免疫受体序列将作为一个易于使用的数据库共享,具有丰富的功能集。开发的数据库将使生命科学研究人员能够系统地比较导致脊椎动物物种受体变异的躯体事件,并为适应性免疫的进化提供新的见解。该项目的结果可以在https://github.com/Mangul-Lab-USC/immune-repertoires-vertebrate-species.This上找到,该奖项反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
pyTCR: A comprehensive and scalable solution for TCR-Seq data analysis to facilitate reproducibility and rigor of immunogenomics research.
  • DOI:
    10.3389/fimmu.2022.954078
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Peng, Kerui;Moore, Jaden;Vahed, Mohammad;Brito, Jaqueline;Kao, Guoyun;Burkhardt, Amanda M.;Alachkar, Houda;Mangul, Serghei
  • 通讯作者:
    Mangul, Serghei
Systematic evaluation of transcriptomics-based deconvolution methods and references using thousands of clinical samples
  • DOI:
    10.1093/bib/bbab265
  • 发表时间:
    2021-08-04
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Nadel, Brian B.;Oliva, Meritxell;Mangul, Serghei
  • 通讯作者:
    Mangul, Serghei
Unlocking capacities of genomics for the COVID-19 response and future pandemics.
  • DOI:
    10.1038/s41592-022-01444-z
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Knyazev, Sergey;Chhugani, Karishma;Sarwal, Varuni;Ayyala, Ram;Singh, Harman;Karthikeyan, Smruthi;Deshpande, Dhrithi;Baykal, Pelin Icer;Comarova, Zoia;Lu, Angela;Porozov, Yuri;Vasylyeva, Tetyana, I;Wertheim, Joel O.;Tierney, Braden T.;Chiu, Charles Y.;Sun, Ren;Wu, Aiping;Abedalthagafi, Malak S.;Pak, Victoria M.;Nagaraj, Shivashankar H.;Smith, Adam L.;Skums, Pavel;Pasaniuc, Bogdan;Komissarov, Andrey;Mason, Christopher E.;Bortz, Eric;Lemey, Philippe;Kondrashov, Fyodor;Beerenwinkel, Niko;Lam, Tommy Tsan-Yuk;Wu, Nicholas C.;Zelikovsky, Alex;Knight, Rob;Crandall, Keith A.;Mangul, Serghei
  • 通讯作者:
    Mangul, Serghei
RNA-seq data science: From raw data to effective interpretation.
  • DOI:
    10.3389/fgene.2023.997383
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Deshpande, Dhrithi;Chhugani, Karishma;Chang, Yutong;Karlsberg, Aaron;Loeffler, Caitlin;Zhang, Jinyang;Muszynska, Agata;Munteanu, Viorel;Yang, Harry;Rotman, Jeremy;Tao, Laura;Balliu, Brunilda;Tseng, Elizabeth;Eskin, Eleazar;Zhao, Fangqing;Mohammadi, Pejman;Labaj, Pawel P.;Mangul, Serghei
  • 通讯作者:
    Mangul, Serghei
Data availability of open T-cell receptor repertoire data, a systematic assessment
  • DOI:
    10.3389/fsysb.2022.918792
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu-Ning Huang;Naresh Amrat Patel;Jay Himanshu Mehta;Srishti Ginjala;P. Brodin;C. Gray;Yesha M Patel;L. Cowell;A. Burkhardt;S. Mangul
  • 通讯作者:
    Yu-Ning Huang;Naresh Amrat Patel;Jay Himanshu Mehta;Srishti Ginjala;P. Brodin;C. Gray;Yesha M Patel;L. Cowell;A. Burkhardt;S. Mangul
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Serghei Mangul其他文献

Systematic benchmarking of omics computational tools
组学计算工具的系统基准测试
  • DOI:
    10.1038/s41467-019-09406-4
  • 发表时间:
    2019-03-27
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Serghei Mangul;Lana S. Martin;Brian L. Hill;Angela Ka-Mei Lam;Margaret G. Distler;Alex Zelikovsky;Eleazar Eskin;Jonathan Flint
  • 通讯作者:
    Jonathan Flint
Improving the usability and archival stability of bioinformatics software
  • DOI:
    10.1186/s13059-019-1649-8
  • 发表时间:
    2019-02-27
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Serghei Mangul;Lana S. Martin;Eleazar Eskin;Ran Blekhman
  • 通讯作者:
    Ran Blekhman
Improving the completeness of public metadata accompanying omics studies
  • DOI:
    10.1186/s13059-021-02332-z
  • 发表时间:
    2021-04-15
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Anushka Rajesh;Yutong Chang;Malak S. Abedalthagafi;Annie Wong-Beringer;Michael I. Love;Serghei Mangul
  • 通讯作者:
    Serghei Mangul
Genomic reproducibility in the bioinformatics era
  • DOI:
    10.1186/s13059-024-03343-2
  • 发表时间:
    2024-08-09
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Pelin Icer Baykal;Paweł Piotr Łabaj;Florian Markowetz;Lynn M. Schriml;Daniel J. Stekhoven;Serghei Mangul;Niko Beerenwinkel
  • 通讯作者:
    Niko Beerenwinkel
Packaging and containerization of computational methods
计算方法的封装和容器化
  • DOI:
    10.1038/s41596-024-00986-0
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
    16.000
  • 作者:
    Mohammed Alser;Brendan Lawlor;Richard J. Abdill;Sharon Waymost;Ram Ayyala;Neha Rajkumar;Nathan LaPierre;Jaqueline Brito;André M. Ribeiro-dos-Santos;Nour Almadhoun;Varuni Sarwal;Can Firtina;Tomasz Osinski;Eleazar Eskin;Qiyang Hu;Derek Strong;Byoung-Do (B.D) Kim;Malak S. Abedalthagafi;Onur Mutlu;Serghei Mangul
  • 通讯作者:
    Serghei Mangul

Serghei Mangul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Serghei Mangul', 18)}}的其他基金

RCN-UBE: Sustainable, nationwide network to promote reproducible big-data analysis in biology programs within community colleges and minority-serving institutions
RCN-UBE:可持续的全国性网络,旨在促进社区大学和少数族裔服务机构内生物学项目的可重复大数据分析
  • 批准号:
    2316223
  • 财政年份:
    2023
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Standard Grant
EAGER: Developing a framework to identify and mitigate perceptual and technical barriers in code sharing to facilitate reproducible and transparent research
EAGER:开发一个框架来识别和减轻代码共享中的感知和技术障碍,以促进可重复和透明的研究
  • 批准号:
    2135954
  • 财政年份:
    2021
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Standard Grant

相似海外基金

Developing and enabling efficient hypothesis test for response-adaptive design with patient benefit goals
开发并启用有效的假设检验,以实现具有患者利益目标的响应自适应设计
  • 批准号:
    MR/Z503538/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Research Grant
Developing efficient and non-transgenic transformation methods for sterile and/or recalcitrant crops
开发针对不育和/或顽固作物的高效非转基因转化方法
  • 批准号:
    10107465
  • 财政年份:
    2024
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Launchpad
Developing the world’s 1st scalable, end-to-end system for cost-efficient, sustainable cultivated pork meat production
开发世界上第一个可扩展的端到端系统,以实现经济高效、可持续的养殖猪肉生产
  • 批准号:
    10079403
  • 财政年份:
    2024
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Collaborative R&D
Developing CRISPR Prime Editing for highly efficient precise gene editing
开发 CRISPR Prime 编辑以实现高效精确的基因编辑
  • 批准号:
    DE230101081
  • 财政年份:
    2023
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Discovery Early Career Researcher Award
Optimal Technology Policies for Achieving Efficient Economic Development in Developing Countries
发展中国家实现高效经济发展的最佳技术政策
  • 批准号:
    23KJ0715
  • 财政年份:
    2023
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidating the neural mechanisms of pre-performance routines and developing efficient training methods
阐明预表演程序的神经机制并开发有效的训练方法
  • 批准号:
    23K16669
  • 财政年份:
    2023
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CoolCows - developing and demonstrating a new model using genomics and IVF to rapidly breed more methane-efficient, sustainable cattle
CoolCows - 开发并展示一种使用基因组学和 IVF 的新模型,以快速培育更高效、可持续的甲烷牛
  • 批准号:
    10078984
  • 财政年份:
    2023
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Responsive Strategy and Planning
Developing a Robust and Efficient Strategy for Censored Covariates to Improve Clinical Trial Design for Neurodegenerative Diseases
为删失协变量制定稳健有效的策略,以改进神经退行性疾病的临床试验设计
  • 批准号:
    10634043
  • 财政年份:
    2023
  • 资助金额:
    $ 74.43万
  • 项目类别:
Developing High Order Stable and Efficient Methods for Long Time Simulations of Gravitational Waveforms
开发高阶稳定且有效的方法来长时间模拟引力波形
  • 批准号:
    2309609
  • 财政年份:
    2023
  • 资助金额:
    $ 74.43万
  • 项目类别:
    Standard Grant
Rapid and Simple Paper Diagnostic Test to Detect Enteric Pathogens in the Developing World
快速、简单的纸质诊断测试可检测发展中国家的肠道病原体
  • 批准号:
    10599023
  • 财政年份:
    2023
  • 资助金额:
    $ 74.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了