CAREER: Generalization and Safety Guarantees for Learning-Based Control of Robots

职业:基于学习的机器人控制的泛化和安全保证

基本信息

  • 批准号:
    2044149
  • 负责人:
  • 金额:
    $ 54.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The ability of machine learning techniques to process rich sensory inputs such as vision makes them highly appealing for use in robotic systems (e.g., micro aerial vehicles and robotic manipulators). However, the increasing adoption of learning-based components in the robotics perception and control pipeline poses an important challenge: how can we guarantee the safety and performance of such systems? As an example, consider a micro aerial vehicle that learns to navigate using a thousand different obstacle environments or a robotic manipulator that learns to grasp using a million objects in a dataset. How likely are these systems to remain safe and perform well on a novel (i.e., previously unseen) environment or object? How can we learn control policies for robotic systems that provably generalize well to environments that our robot has not previously encountered? Unfortunately, existing approaches either do not provide such guarantees or do so only under very restrictive assumptions. This Faculty Early Career Development (CAREER) project seeks to establish a foundational framework for learning-based control of safety-critical robotic systems with guaranteed generalization and safety. The project will impact challenging application domains such as aerial inspection and manipulation (e.g., for infrastructure repair tasks) and includes activities for (i) engaging regulatory agencies and industry entities in discussions regarding the certification of learning-based robotic systems, (ii) partnering with teacher preparation programs and other educational programs to engage high-school and undergraduate students in robotics, and (iii) widely disseminating materials from a new robotics course which uses hands-on labs with drones. Motivated by the need for guaranteeing the safety of learning-based robotic systems, this project is developing a principled theoretical and algorithmic framework for learning control policies for robotic systems with provable guarantees on generalization to novel environments (i.e., environments that the robot has not previously encountered). The key technical insight of this project is to leverage and extend powerful techniques from generalization theory in theoretical machine learning. The resulting framework provides bounds on the expected performance of learned policies (including ones based on neural networks) across novel environments. The project is developing algorithms (based on convex optimization, gradient-based methods, and black-box optimization) for learning policies that explicitly optimize these bounds. The project also seeks to guarantee the robustness of learned policies to shifts in the distribution of environments that the robot encounters. An important part of the effort is to thoroughly validate the technical approach on hardware platforms including micro aerial vehicles performing navigation, inspection, and aerial manipulation tasks motivated by infrastructure repair applications. This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习技术处理视觉等丰富的感觉输入的能力使其在机器人系统(如微型飞行器和机器人操作器)中的使用具有极大的吸引力。然而,在机器人感知和控制管道中越来越多地采用基于学习的组件构成了一个重要的挑战:我们如何保证此类系统的安全和性能?作为一个例子,假设一个微型飞行器使用一千个不同的障碍环境学习导航,或者一个机器人机械手使用数据集中的一百万个对象学习抓取。这些系统在新的(即以前看不见的)环境或物体上保持安全并良好运行的可能性有多大?我们如何学习机器人系统的控制策略,这些策略可以很好地推广到我们的机器人以前从未遇到过的环境中?不幸的是,现有的方法要么不提供这种保证,要么只在非常有限的假设下这样做。该学院早期职业发展(CAREAGE)项目旨在为安全关键机器人系统的基于学习的控制建立一个基本框架,并保证通用性和安全性。该项目将影响具有挑战性的应用领域,如空中检查和操纵(例如,基础设施维修任务),并包括以下活动:(I)让监管机构和行业实体参与关于基于学习的机器人系统认证的讨论,(Ii)与教师培训计划和其他教育计划合作,让高中生和本科生学习机器人技术,以及(Iii)广泛传播使用无人机动手实验室的新机器人课程的材料。出于保证基于学习的机器人系统安全的需要,该项目正在为机器人系统的学习控制政策制定一个原则性的理论和算法框架,并对推广到新环境(即机器人以前从未遇到过的环境)提供可证明的保证。该项目的关键技术见解是利用和扩展理论机器学习中泛化理论的强大技术。由此产生的框架为跨新环境的学习策略(包括基于神经网络的策略)的预期性能提供了界限。该项目正在开发用于明确优化这些界限的学习策略的算法(基于凸优化、基于梯度的方法和黑盒优化)。该项目还寻求确保学习的策略对机器人遇到的环境分布变化的稳健性。这项工作的一个重要部分是在硬件平台上彻底验证技术方法,包括执行基础设施修复应用程序所驱动的导航、检查和空中操纵任务的微型飞行器。该项目由跨部门机器人基础研究计划支持,该计划由工程学指导委员会(ENG)和计算机与信息科学与工程指导委员会(CEISE)共同管理和资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Control Under Uncertainty via Bounded Rationality and Differential Privacy
Sim-to-Lab-to-Real: Safe Reinforcement Learning with Shielding and Generalization Guarantees
  • DOI:
    10.1016/j.artint.2022.103811
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kai Hsu;Allen Z. Ren;D. Nguyen;Anirudha Majumdar;J. Fisac
  • 通讯作者:
    Kai Hsu;Allen Z. Ren;D. Nguyen;Anirudha Majumdar;J. Fisac
Fundamental Performance Limits for Sensor-Based Robot Control and Policy Learning
  • DOI:
    10.15607/rss.2022.xviii.036
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anirudha Majumdar;Vincent Pacelli
  • 通讯作者:
    Anirudha Majumdar;Vincent Pacelli
Distributionally Robust Policy Learning via Adversarial Environment Generation
  • DOI:
    10.1109/lra.2021.3139949
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Allen Z. Ren;Anirudha Majumdar
  • 通讯作者:
    Allen Z. Ren;Anirudha Majumdar
Failure Prediction with Statistical Guarantees for Vision-Based Robot Control
基于视觉的机器人控制的具有统计保证的故障预测
  • DOI:
    10.15607/rss.2022.xviii.042
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Farid, Alec;Snyder, David;Ren, Allen Z.;Majumdar, Anirudha
  • 通讯作者:
    Majumdar, Anirudha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anirudha Majumdar其他文献

Learning to Actively Reduce Memory Requirements for Robot Control Tasks
学习主动减少机器人控制任务的内存需求
Hardness Results and Algebraic Relaxations for Control of Underactuated Robots
欠驱动机器人控制的硬度结果和代数松弛
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anirudha Majumdar;Amir Ali Ahmadi
  • 通讯作者:
    Amir Ali Ahmadi
MonoNav: MAV Navigation via Monocular Depth Estimation and Reconstruction
MonoNav:通过单目深度估计和重建进行 MAV 导航
  • DOI:
    10.48550/arxiv.2311.14100
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathaniel Simon;Anirudha Majumdar
  • 通讯作者:
    Anirudha Majumdar
Characterization of Dynamic Behaviors in a Hexapod Robot
六足机器人动态行为的表征
  • DOI:
    10.1007/978-3-642-28572-1_46
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    H. Komsuoglu;Anirudha Majumdar;Yasemin Ozkan;D. Koditschek
  • 通讯作者:
    D. Koditschek
Complexity of ten decision problems in continuous time dynamical systems
连续时间动力系统中十个决策问题的复杂性
  • DOI:
    10.1109/acc.2013.6580838
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amir Ali Ahmadi;Anirudha Majumdar;Russ Tedrake
  • 通讯作者:
    Russ Tedrake

Anirudha Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anirudha Majumdar', 18)}}的其他基金

CRII: RI: Memory-efficient Representations for Robot Tasks: Lower Bounds and Scalable Algorithms
CRII:RI:机器人任务的内存高效表示:下界和可扩展算法
  • 批准号:
    1755038
  • 财政年份:
    2018
  • 资助金额:
    $ 54.6万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
  • 批准号:
    2339198
  • 财政年份:
    2024
  • 资助金额:
    $ 54.6万
  • 项目类别:
    Continuing Grant
CAREER: Towards Continual Learning on Evolving Graphs: from Memorization to Generalization
职业:走向演化图的持续学习:从记忆到泛化
  • 批准号:
    2338878
  • 财政年份:
    2024
  • 资助金额:
    $ 54.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 54.6万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 54.6万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 54.6万
  • 项目类别:
    Standard Grant
Development of a high-rate ultrasonic windspeed measurement method based on a generalization of time inverse method and wave number estimation using EKF
开发基于时间反演方法和 EKF 波数估计推广的高速超声波风速测量方法
  • 批准号:
    23K03880
  • 财政年份:
    2023
  • 资助金额:
    $ 54.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Learning for Generalization in Large-Scale Cyber-Physical Systems
职业:大规模网络物理系统中的泛化学习
  • 批准号:
    2239566
  • 财政年份:
    2023
  • 资助金额:
    $ 54.6万
  • 项目类别:
    Continuing Grant
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
  • 批准号:
    23K03042
  • 财政年份:
    2023
  • 资助金额:
    $ 54.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Disentangling generalization in deep neural networks
解开深度神经网络中的泛化问题
  • 批准号:
    2872706
  • 财政年份:
    2023
  • 资助金额:
    $ 54.6万
  • 项目类别:
    Studentship
Discrete structures related to hyperplane arrangements, generalization, deepening, and applications
与超平面排列、泛化、深化和应用相关的离散结构
  • 批准号:
    23H00081
  • 财政年份:
    2023
  • 资助金额:
    $ 54.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了