EAGER: All-Optical Information Processing Device for Seeing Through Diffusers at the Speed of Light

EAGER:以光速透过漫射器的全光学信息处理装置

基本信息

  • 批准号:
    2054102
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-11-15 至 2021-10-31
  • 项目状态:
    已结题

项目摘要

Proposal Number: 2054102Principal Investigator: Aydogan Ozcan (PI) and Mona Jarrahi (co-PI)Institution: University of California, Los AngelesTitle: EAGER: All-Optical Information Processing Device for Seeing Through Diffusers at the Speed of LightProgram Description: EAGER: Electronics, Photonics, and Magnetic DevicesNon-Technical Abstract:Imaging through scattering and diffusive media such as fog, clouds or human tissue has been an important problem for many decades. Without an exception, all the previous methods are based on, at their core, digital computers, such that the signals are first detected by a device and then processed using digital computers to reconstruct the diffuser-distorted images. There is an important and pressing need for a new generation of optical devices that can see, detect and quantify target objects through for example human tissues, walls, packages, clouds, fogs, etc., at the speed of light and without using any power-hungry digital computation. This unique capability, once fully demonstrated and developed, might open various new applications in autonomous systems, biomedical imaging, astronomy, astrophysics, atmospheric sciences, security, robotics, and many other fields.Technical Abstract:In this proposal, a computer-free, all-optical device that will see through unknown diffusers at the speed of light, without the need for any digital computation device will be developed. Unlike previous digital approaches that utilized computers to reconstruct an image of the input object behind unknown diffusers, a passive device will be created using a set of diffractive surfaces/layers to all-optically reconstruct the image of an unknown object as the diffuser-distorted input signals diffract through successive trained diffractive layers, i.e., the image reconstruction will be processed at the speed of light through this device. Each diffractive surface of a given device designed will have thousands of diffractive features (termed as neurons), where the individual phase values of these neurons will be adjusted in the training phase through error back-propagation, by minimizing a customized loss function between the ground truth image and the diffracted pattern at the output field-of-view. After this deep learning-based design of these diffractive layers, the resulting passive device will be fabricated to form a physical diffractive optical network that is positioned between an unknown diffuser and the output/image plane. As the input object light passes through an unknown diffuser, the scattered light will be collected by the trained diffractive device to passively reconstruct the distorted image. The success of this diffractive device will be demonstrated in 0.1-3 THz frequency band. Unlike other devices, the proposed diffractive image reconstruction device operates at the speed of light and does not require any power except for the illumination light. This all-optical image reconstruction that will be achieved by passive diffractive layers will enable to see objects through unknown diffusers and present an extremely low power device compared with existing deep learning-based or iterative image reconstruction methods implemented in computers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
提案编号:2054102主要研究者:Aydogan Ozcan(PI)和莫纳Jarrahi(co-PI)机构:洛杉矶加州大学标题:EAGER:全光学信息处理设备,用于以光速透过漫射器观察程序描述:EAGER:电子,光子学和磁性设备非技术摘要:通过散射和漫射介质(如雾,云或人体组织)成像几十年来一直是一个重要的问题。无一例外,所有以前的方法都是基于,在其核心,数字计算机,这样的信号首先由设备检测,然后使用数字计算机处理,以重建扩散器失真的图像。存在对新一代光学设备的重要且迫切的需求,所述新一代光学设备可以通过例如人体组织、墙壁、包裹、云、雾等看到、检测和量化目标对象,以光速运行,而不需要任何耗电的数字计算。这种独特的能力,一旦充分展示和开发,可能会打开各种新的应用在自治系统,生物医学成像,天文学,天体物理学,大气科学,安全,机器人,和许多其他领域。技术摘要:在这个建议中,一个计算机免费的,全光学设备,将看到通过未知的扩散器在光速,而不需要任何数字计算设备将被开发。与利用计算机来重建未知漫射器后面的输入对象的图像的先前数字方法不同,将使用一组衍射表面/层来创建无源设备,以在漫射器失真的输入信号通过连续训练的衍射层衍射时全光学地重建未知对象的图像,即,图像重建将以光速通过该装置进行处理。设计的给定设备的每个衍射表面将具有数千个衍射特征(称为神经元),其中这些神经元的各个相位值将在训练阶段通过误差反向传播来调整,通过最小化地面实况图像与输出视场处的衍射图案之间的定制损失函数。在这些衍射层的这种基于深度学习的设计之后,将制造所得到的无源器件以形成位于未知漫射器和输出/图像平面之间的物理衍射光学网络。当输入的物体光通过一个未知的漫射器时,散射光将被训练的衍射装置收集以被动地重建失真的图像。该衍射器件的成功将在0.1-3 THz频段得到验证。与其他装置不同,所提出的衍射图像重建装置以光速操作,并且除了照明光之外不需要任何功率。这种将通过被动衍射层实现的全光学图像重建将能够通过未知的漫射器看到物体,并且与现有的基于深度学习或计算机中实现的迭代图像重建方法相比,该设备的功耗极低。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational imaging without a computer: seeing through random diffusers at the speed of light
  • DOI:
    10.1186/s43593-022-00012-4
  • 发表时间:
    2022-01-26
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luo, Yi;Zhao, Yifan;Ozcan, Aydogan
  • 通讯作者:
    Ozcan, Aydogan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aydogan Ozcan其他文献

Deep Learning-designed Diffractive Materials for Optical Computing and Computational Imaging
用于光学计算和计算成像的深度学习设计的衍射材料
All-optical object classification through unknown phase diffusers using a single-pixel diffractive machine vision system
使用单像素衍射机器视觉系统通过未知相位漫射器进行全光学物体分类
Volumetric fluorescence microscopy using convolutional recurrent neural networks
使用卷积循环神经网络的体积荧光显微镜
Automated HER2 Scoring in Breast Cancer Images Using Deep Learning and Pyramid Sampling
使用深度学习和金字塔采样对乳腺癌图像进行自动 HER2 评分
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Şahan Yoruç Selçuk;Xilin Yang;Bijie Bai;Yijie Zhang;Yuzhu Li;Musa Aydin;Aras Firat Unal;Aditya Gomatam;Zhen Guo;Morgan Angus Darrow;Goren Kolodney;Karine Atlan;T. Haran;N. Pillar;Aydogan Ozcan
  • 通讯作者:
    Aydogan Ozcan
Super-Resolution Terahertz Imaging Through a Plasmonic Photoconductive Focal-Plane Array
通过等离子体光电导焦平面阵列进行超分辨率太赫兹成像
  • DOI:
    10.1364/cleo_si.2023.sm1n.2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xurong Li;Deniz Mengu;Aydogan Ozcan;M. Jarrahi
  • 通讯作者:
    M. Jarrahi

Aydogan Ozcan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aydogan Ozcan', 18)}}的其他基金

PFI-TT: A Rapid Multiplexed Diagnostic Tool for Serology of Tick-Borne Diseases
PFI-TT:蜱传疾病血清学快速多重诊断工具
  • 批准号:
    2345816
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Biopsy-free, label-free 3D virtual histology of intact skin
完整皮肤的免活检、免标记 3D 虚拟组织学
  • 批准号:
    2141157
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Deep learning-based serological test for point-of-care analysis of COVID-19 immunity with a paper-based multiplexed sensor
基于深度学习的血清学测试,使用纸基多重传感器对 COVID-19 免疫力进行即时分析
  • 批准号:
    2149551
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
I-Corps: Multiplexed paper-based test for rapid diagnosis of early-stage Lyme Disease
I-Corps:用于快速诊断早期莱姆病的多重纸质测试
  • 批准号:
    2055749
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: High-throughput early detection and analysis of COVID-19 plaque formation using time-lapse coherent imaging and deep learning
EAGER:使用延时相干成像和深度学习对 COVID-19 斑块形成​​进行高通量早期检测和分析
  • 批准号:
    2034234
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
NSF EAGER: DEEP LEARNING-BASED VIRTUAL HISTOLOGY STAINING OF TISSUE SAMPLES
NSF EAGER:基于深度学习的组织样本虚拟组织学染色
  • 批准号:
    1926371
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
PFI:BIC Human-Centered Smart-Integration of Mobile Imaging and Sensing Tools with Machine Learning for Ubiquitous Quantification of Waterborne and Airborne Nanoparticles
PFI:BIC 以人为中心的移动成像和传感工具与机器学习的智能集成,可实现水性和空气性纳米粒子的普遍定量
  • 批准号:
    1533983
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Mobile-phone based single molecule imaging of DNA and length quantification to analyze copy-number variations in genome
EAGER:基于手机的 DNA 单分子成像和长度定量分析基因组中的拷贝数变异
  • 批准号:
    1444240
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: Cellphone-based Digital Immunoassay Platform for High-throughput Sensitive and Multiplexed Detection and Distributed Spatio-Temporal Analysis of Influenza
EFRI-BioFlex:基于手机的数字免疫分析平台,用于流感的高通量灵敏多重检测和分布式时空分析
  • 批准号:
    1332275
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: A new Telemedicine Platform using Incoherent Lensfree Cell Holography and Microscopy On a Chip
事业:使用非相干无透镜细胞全息术和芯片显微镜的新型远程医疗平台
  • 批准号:
    0954482
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Optical control of nuclear spin-spin couplings and its application to quantum information processing
核自旋-自旋耦合的光控制及其在量子信息处理中的应用
  • 批准号:
    23H01131
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Sequence-Defined Polymers with Optical Information Readout
具有光学信息读出功能的序列定义聚合物
  • 批准号:
    DP230100305
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Projects
Solid state optical nonlinearities for quantum information processing
用于量子信息处理的固态光学非线性
  • 批准号:
    2887452
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
ExpandQISE Track 1: Quantum information exchange over spatially-multimode and multi-core optical fibers
ExpandQISE Track 1:通过空间多模和多芯光纤进行量子信息交换
  • 批准号:
    2231388
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Registration of Endoscopic Optical Information to Volumetric Imaging
内窥镜光学信息与体积成像的配准
  • 批准号:
    RGPIN-2019-04759
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
MRI: Acquisition of a Phase Stabilized Optical Frequency Comb for Precision Metrology, Quantum Sensing, Information Processing, and Novel Spectroscopy
MRI:获取用于精密计量、量子传感、信息处理和新型光谱学的相位稳定光学频率梳
  • 批准号:
    2117253
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Development of a method for extracting flooded areas using SAR and optical satellite images and spatial information
开发利用 SAR 和光学卫星图像以及空间信息提取洪水区域的方法
  • 批准号:
    21K14270
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Registration of Endoscopic Optical Information to Volumetric Imaging
内窥镜光学信息与体积成像的配准
  • 批准号:
    RGPIN-2019-04759
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Registration of Endoscopic Optical Information to Volumetric Imaging
内窥镜光学信息与体积成像的配准
  • 批准号:
    RGPIN-2019-04759
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
High spatial resolution information retrieved from satellite based optical measurements
从基于卫星的光学测量中检索到的高空间分辨率信息
  • 批准号:
    551510-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了