CAREER: Driving Hierarchical Collagen Fiber Maturation with Mechanobiology
职业:用力学生物学推动分层胶原纤维成熟
基本信息
- 批准号:2045995
- 负责人:
- 金额:$ 54.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) award will examine how the mechanical forces of development guide cells to produce collagen fibers. Specifically, this work will study how fibers are made to have the same organization and strength as native collagen fibers. Collagen fibers are the primary source of strength in tissues throughout the body, particularly in tendons, ligaments, and menisci. However these fibers are not recreated after injury. Engineered tissue replacements do not include these fibers, which makes repair options inadequate. Native collagen fibers are primarily formed postnatally when mechanical cues guide cells to assemble small fibrils into larger fibers and fascicles. These mechanical cues are critical to fiber formation, however their individual contributions are unknown. This work will explore how developmental slow stretch and muscle-inspired cyclic loading drive cells to produce hierarchically organized collagen fibers. Additionally, this research will shed light on the mechanics that govern fiber formation. A multi-level educational program based in orthopaedics and tissue engineering will be developed as well, aimed at recruiting and retaining underrepresented minorities and women in STEM. Specifically, undergraduates will participate in research opportunities and interdisciplinary courses, middle and high school students will be engaged through hands-on research and National Biomechanics Day programming, and local middle and high school teachers will be trained in inquiry-based curriculum techniques to promote enhanced retention of STEM throughout the central Virginia area. The specific goal of this research is to explore how developmentally-inspired mechanical loads drive ligament fibroblasts to produce engineered ligament with native organization and strength. The central hypothesize is that tensile strains, which mirror developmental slow elongation and rapid cyclic muscle activity, will individually and synergistically drive native-like hierarchical collagen organization and matrix maturation, in a magnitude- and duration-dependent fashion, resulting in significantly stronger, functional replacements. Using a novel culture system, which supports cellular development of the largest, most organized hierarchical fibers to date, this research will investigate how 1) slow strains (0.1-1 mm/day) that mimic postnatal growth rates, and 2) rapid intermittent cyclic tensile strains (1-2 mm/sec) that mimic muscular activity, individually and 3) in combination drive hierarchical collagen fiber maturation. Specifically, collagen organization at the fibril, fiber, and fascicle level, matrix composition, and tissue mechanical properties will be evaluated with each type of strain. Slow growth elongation and rapid cyclic muscle activity occur at strain rates orders of magnitude apart, most likely producing very different effects on cells. Understanding the different effects of these loads will not only help to engineer functional replacements, but will be integral in developing rehabilitation protocols to restore function after injury. Future work can use these results to drive regeneration of collagen fibers after injury.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师早期职业发展(CAREER)奖将研究发展的机械力如何引导细胞产生胶原纤维。 具体来说,这项工作将研究如何使纤维具有与天然胶原纤维相同的组织和强度。 胶原纤维是全身组织的主要力量来源,特别是肌腱、韧带和韧带。然而,这些纤维在受伤后不会重新产生。工程组织替代品不包括这些纤维,这使得修复选择不足。天然胶原纤维主要是在出生后形成的,当时机械信号引导细胞将小原纤维组装成较大的纤维和纤维束。这些机械信号对纤维的形成至关重要,但它们各自的作用尚不清楚。这项工作将探索如何发展缓慢的拉伸和肌肉启发的循环负荷驱动细胞产生分层组织胶原纤维。此外,这项研究将揭示控制纤维形成的机制。 还将制定一项基于骨科和组织工程的多层次教育计划,旨在招募和留住STEM中代表性不足的少数民族和妇女。具体而言,本科生将参加研究机会和跨学科课程,初中和高中学生将通过动手研究和国家生物力学日编程参与,当地初中和高中教师将接受基于探究的课程技术培训,以促进整个弗吉尼亚州中部地区的STEM保留率提高。本研究的具体目标是探索发育激发的机械载荷如何驱动韧带成纤维细胞产生具有天然组织和强度的工程化韧带。中心假设是,拉伸应变,反映了发育缓慢的伸长和快速的周期性肌肉活动,将单独和协同驱动天然样的分层胶原组织和基质成熟,在幅度和持续时间依赖的方式,导致显着更强,功能性替代。使用一种新的培养系统,该系统支持迄今为止最大、最有组织的分层纤维的细胞发育,本研究将研究1)模拟出生后生长速率的缓慢应变(0.1-1 mm/天)和2)模拟肌肉活动的快速间歇性循环拉伸应变(1-2 mm/秒),单独和3)组合如何驱动分层胶原纤维成熟。具体而言,将使用每种类型的应变评价原纤维、纤维和纤维束水平的胶原组织、基质组成和组织机械性能。缓慢的生长伸长和快速的周期性肌肉活动发生在应变率的数量级分开,最有可能产生非常不同的影响细胞。了解这些负荷的不同影响不仅有助于设计功能性置换,而且在制定损伤后恢复功能的康复方案时也是不可或缺的。 未来的工作可以使用这些结果来驱动损伤后胶原纤维的再生。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Puetzer其他文献
Jennifer Puetzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 54.87万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 54.87万 - 项目类别:
Standard Grant
Driving Behaviour in Multi-Winner Elections (BMW)
多位获胜者选举中的驾驶行为(宝马)
- 批准号:
EP/X038548/1 - 财政年份:2024
- 资助金额:
$ 54.87万 - 项目类别:
Research Grant
Driving Behaviour in Multi-Winner Elections (BMW)
多位获胜者选举中的驾驶行为(宝马)
- 批准号:
EP/X038351/1 - 财政年份:2024
- 资助金额:
$ 54.87万 - 项目类别:
Research Grant
The role of microbes in driving productivity and carbon fixation in seaweeds
微生物在提高海藻生产力和碳固定方面的作用
- 批准号:
2329475 - 财政年份:2024
- 资助金额:
$ 54.87万 - 项目类别:
Standard Grant
Near-infrared GaN quantum cascade laser for the next-generation self-driving car
用于下一代自动驾驶汽车的近红外GaN量子级联激光器
- 批准号:
23K20955 - 财政年份:2024
- 资助金额:
$ 54.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Understanding the impacts of an ongoing megadrought: Synthesizing the role of soil moisture in driving ecosystem fluxes from site to regional scales
合作研究:了解正在进行的特大干旱的影响:综合土壤湿度在驱动生态系统通量从场地到区域尺度方面的作用
- 批准号:
2331163 - 财政年份:2024
- 资助金额:
$ 54.87万 - 项目类别:
Standard Grant
I-Corps: Safe Driving Routing Tool
I-Corps:安全驾驶路线工具
- 批准号:
2349882 - 财政年份:2024
- 资助金额:
$ 54.87万 - 项目类别:
Standard Grant
Driving Innovation Responsibly: Commercialising CAV Services in the Scottish Highlands and Islands
负责任地推动创新:在苏格兰高地和岛屿实现 CAV 服务的商业化
- 批准号:
10085345 - 财政年份:2024
- 资助金额:
$ 54.87万 - 项目类别:
Legacy Department of Trade & Industry
Postdoctoral Fellowship: EAR-PF: Reconstructing the role of beavers in driving Holocene landscape evolution and resilience in the Sierra Nevada range, California
博士后奖学金:EAR-PF:重建河狸在推动加州内华达山脉全新世景观演化和恢复力方面的作用
- 批准号:
2305572 - 财政年份:2024
- 资助金额:
$ 54.87万 - 项目类别:
Fellowship Award














{{item.name}}会员




