CAREER: New Analytic Frontiers for Symmetric Cryptography

职业:对称密码学的新分析前沿

基本信息

  • 批准号:
    2046540
  • 负责人:
  • 金额:
    $ 56.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Justifying security of real-world cryptographic systems is often challenging because those legacy systems were not originally designed with a provable-security goal in mind, and consequently theoretical explanations may be unsatisfactory, failing to capture the real strength of the systems. In some other cases, provably secure designs are too expensive for performance-hungry applications, and practitioners therefore have to resort to heuristic solutions. This project takes a critical step towards this long-term goal by developing new proof techniques for symmetric cryptography to understand the exact security of real-world schemes, and bridge the performance gap between provable-security designs and heuristic ones. The project studies how to build practical and provably secure Format-Preserving Encryption schemes, a tool that is widely used for encrypting credit-card numbers. The project revisits the security analyses of several widely used Random Number Generators, strengthening them with new analytic methods to obtain tight bounds. The project investigates how to give tight time-memory trade-offs for symmetric encryption schemes. The investigator develops an original problem-solving course in which students experience the full discovery process with trial-and-error, guessing, forming attack plans, and validating them. This class targets senior undergraduate students and first-year graduate students, preparing them with a proper background for doing research in theoretical computer science. Some of this material is used in the Young Scholars Program, a summer science and math program for high-school seniors in Florida.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
证明真实世界加密系统的安全性通常具有挑战性,因为这些遗留系统最初设计时并没有考虑到可证明的安全性目标,因此理论解释可能不令人满意,无法捕捉系统的真实强度。在其他一些情况下,可证明的安全设计对于性能要求很高的应用程序来说过于昂贵,因此从业者不得不求助于启发式解决方案。该项目通过为对称密码学开发新的证明技术来了解现实世界方案的确切安全性,并弥合可证明安全性设计与启发式设计之间的性能差距,从而朝着这一长期目标迈出了关键的一步。该项目研究如何构建实用且可证明安全的保格式加密方案,这是一种广泛用于加密信用卡号码的工具。该项目回顾了几种广泛使用的随机数生成器的安全性分析,用新的分析方法加强它们以获得紧界。该项目研究了如何为对称加密方案提供紧凑的时间-内存权衡。研究者开发了一个原创的解决问题的课程,在这个课程中,学生通过试错、猜测、形成攻击计划和验证来体验完整的发现过程。本课程的目标是高年级本科生和一年级研究生,为他们做理论计算机科学的研究准备适当的背景。其中一些材料被用于“青年学者计划”,这是一个针对佛罗里达州高中高年级学生的暑期科学和数学项目。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Schemes for Committing Authenticated Encryption
  • DOI:
    10.1007/978-3-031-07085-3_29
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Bellare;V. Hoang
  • 通讯作者:
    M. Bellare;V. Hoang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viet Tung Hoang其他文献

Automated Analysis and Synthesis of Authenticated Encryption Schemes
认证加密方案的自动分析和综合
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Viet Tung Hoang;Jonathan Katz;A. Malozemoff
  • 通讯作者:
    A. Malozemoff

Viet Tung Hoang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viet Tung Hoang', 18)}}的其他基金

CRII: SaTC: Towards Stronger and Verified Security for Real-World Cryptography
CRII:SaTC:为现实世界的密码学提供更强且经过验证的安全性
  • 批准号:
    1755539
  • 财政年份:
    2018
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Standard Grant

相似海外基金

Innovative analytic methods in the imaging of upper tract urothelial carcinoma: Radiomics, Radiogenomics and creation of a new prognostic tool for systemic therapies of UTUC
上尿路尿路上皮癌成像的创新分析方法:放射组学、放射基因组学以及为 UTUC 全身治疗创建新的预后工具
  • 批准号:
    503318851
  • 财政年份:
    2022
  • 资助金额:
    $ 56.4万
  • 项目类别:
    WBP Fellowship
New analytic approaches and endpoints in human HIV vaccine correlate studies
人类艾滋病毒疫苗相关研究的新分析方法和终点
  • 批准号:
    10613609
  • 财政年份:
    2022
  • 资助金额:
    $ 56.4万
  • 项目类别:
A Study of New Methodologies in Analytic Philosophy
分析哲学新方法论研究
  • 批准号:
    22K00004
  • 财政年份:
    2022
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A New Analytic Approach to Time-series of Collective Motion with Integrated Statistical and Mathematical Modeling Strategy
综合统计和数学建模策略的集体运动时间序列的新分析方法
  • 批准号:
    21K11789
  • 财政年份:
    2021
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New development of analytic torsion invariants
解析扭转不变量的新进展
  • 批准号:
    21H00984
  • 财政年份:
    2021
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A new paradigm for spectral localisation of operator pencils and analytic operator-valued functions
算子铅笔谱定位和解析算子值函数的新范式
  • 批准号:
    EP/T000902/1
  • 财政年份:
    2020
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Research Grant
New analytic structures in gauge theories
规范理论中的新分析结构
  • 批准号:
    SAPIN-2017-00034
  • 财政年份:
    2019
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Subatomic Physics Envelope - Individual
New analytic structures in gauge theories
规范理论中的新分析结构
  • 批准号:
    SAPIN-2017-00034
  • 财政年份:
    2018
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Subatomic Physics Envelope - Individual
RIDIR: Survey Data Recycling: New Analytic Framework, Integrated Database, and Tools for Cross-national Social, Behavioral and Economic Research
RIDIR:调查数据回收:新的分析框架、综合数据库以及跨国社会、行为和经济研究工具
  • 批准号:
    1738502
  • 财政年份:
    2017
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Standard Grant
Analytic approach to new black holes by derivative expansion metho
导数展开法解析新黑洞
  • 批准号:
    17K05451
  • 财政年份:
    2017
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了