CAREER: Mechanics of Next-Generation Composites using Cellulose and Bioinspired Interfaces

职业:使用纤维素和仿生界面的下一代复合材料的力学

基本信息

  • 批准号:
    2046627
  • 负责人:
  • 金额:
    $ 53.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development (CAREER) grant will lay the research and educational foundations to usher plant-inspired design to address challenges for next-generation composites. As existing composites reach their functionality limits, sometimes with disruptive consequences on earth, engineering design needs to shift to sustainable materials. Furthermore, a biobased economy is also necessary for the viability of rural America. The project is uniquely positioned to address both these challenges through (1) research focus on the fundamental mechanics of plant cell wall and their interfaces to drive innovation in flexible composites, and (2) educational focus on rural and Native American communities to increase their preparedness for the high-skilled STEM workforce of the future. The remarkable ability for plants to survive and adapt to their environment can be attributed to their cell wall, balancing constraints from strength, fluid flow, and thermal regulation. The overarching research goal is to decode these principles for the cell wall of a fast-growing plant stem and use it to design new composites. Such flexible plant-inspired materials can have broad implications in tissue engineering, robotics, wearable electronics, and defense industries. The project will also collaborate with a science museum to develop and disseminate culturally integrated materials science curricula for underrepresented communities. Simultaneously, the project will also create research opportunities for undergraduates to increase their engagement and retention, and advance lasting benefits to society.The overall research goal is to create new engineering insights into the organization of primary cell wall structure in a fast-growing plant stem and use these insights to guide the design and manufacturability of cellulose-reinforced composites for flexibility and temperature sensitivity. The research objectives are to (1) create a micromechanics-based multiscale computational framework of the primary cell wall to identify the underlying mechanics driving their thermomechanical response, (2) experimentally investigate the fiber-matrix (here cellulose-pectin) interfaces within the cell wall under variable environmental constraints to guide the computational framework and develop predictive models, and (3) develop an electrospinning-based manufacturing platform to create cell-wall inspired flexible fiber-reinforced structures. The research will focus on the thick-walled xylem vascular tissue due to its multifunctionality for strength, water conduction, and temperature management. By taking a systematic and holistic approach from multiscale mechanics to interface characterization and manufacturing, this project will address unanswered questions to design next-generation multifunctional flexible composites. The project outcomes will open the field for a machine learning-based predictive platform for applications to broader engineering systems.This project is jointly funded by CMMI and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)拨款将奠定研究和教育基础,以迎接植物灵感的设计,以应对下一代复合材料的挑战。随着现有复合材料达到其功能极限,有时会对地球产生破坏性影响,工程设计需要转向可持续材料。此外,以生物为基础的经济对美国农村的生存也是必要的。该项目具有独特的优势,可以通过以下方式应对这些挑战:(1)研究重点是植物细胞壁及其界面的基本力学,以推动柔性复合材料的创新;(2)教育重点是农村和美洲原住民社区,以提高他们对未来高技能STEM劳动力的准备。植物生存和适应环境的显着能力可以归因于它们的细胞壁,平衡来自强度,流体流动和温度调节的约束。总体研究目标是解码快速生长植物茎细胞壁的这些原理,并利用它来设计新的复合材料。这种灵活的植物灵感材料可以在组织工程,机器人,可穿戴电子产品和国防工业中产生广泛的影响。该项目还将与一个科学博物馆合作,为代表性不足的社区制定和传播融入文化的材料科学课程。同时,该项目还将为本科生创造研究机会,提高他们的参与度和保留率,并为社会带来持久的利益。总体研究目标是为快速生长的植物茎中初生细胞壁结构的组织创造新的工程见解,并利用这些见解指导纤维素增强复合材料的设计和可制造性,以实现灵活性和温度敏感性。本文的研究目标是:(1)建立一个基于细观力学的初生细胞壁多尺度计算框架,以确定驱动其热机械响应的潜在力学机制,(2)实验研究纤维基质(这里是纤维素-果胶)在可变环境约束下的细胞壁内的界面,以指导计算框架并开发预测模型,以及(3)开发基于静电纺丝的制造平台,以创建细胞壁启发的柔性纤维增强结构。研究将集中在厚壁木质部维管组织,由于其多功能的强度,水分传导和温度管理。通过从多尺度力学到界面表征和制造的系统和整体方法,该项目将解决设计下一代多功能柔性复合材料的未回答问题。该项目的成果将为基于机器学习的预测平台在更广泛的工程系统中的应用开辟新的领域。该项目由CMMI和激励竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anamika Prasad其他文献

Fundamental interactions between pectin and cellulose nanocrystals: a molecular dynamics simulation
  • DOI:
    10.1007/s10570-025-06611-x
  • 发表时间:
    2025-06-18
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Xiawa Wu;Anamika Prasad
  • 通讯作者:
    Anamika Prasad
Green synthesis of neem extract and neem oil-based azadirachtin nanopesticides for fall Armyworm control and management
用于控制和管理秋季粘虫的基于印楝提取物和印楝油的印楝素纳米农药的绿色合成
  • DOI:
    10.1016/j.ecoenv.2025.118168
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Ivan Oyege;Alexi Switz;Lauren Oquendo;Anamika Prasad;Maruthi Sridhar Balaji Bhaskar
  • 通讯作者:
    Maruthi Sridhar Balaji Bhaskar
In cardiac muscle cells, both adrenergic agonists and antagonists induce reactive oxygen species from NOX2 but mutually attenuate each other's effects
  • DOI:
    10.1016/j.ejphar.2021.174350
  • 发表时间:
    2021-10-05
  • 期刊:
  • 影响因子:
  • 作者:
    Anamika Prasad;Amena Mahmood;Richa Gupta;Padmini Bisoyi;Nikhat Saleem;Sathyamangla V. Naga Prasad;Shyamal K. Goswami
  • 通讯作者:
    Shyamal K. Goswami
Functionalized quinolones and isoquinolones emvia/em 1,2-difunctionalization of arynes: synthesis of antagonist agent AS2717638 and floxacin key intermediates
功能化喹诺酮和异喹诺酮对芳烃的 1,2-双官能团化:拮抗剂 AS2717638 和氟喹诺酮关键中间体的合成
  • DOI:
    10.1039/d4cc05671j
  • 发表时间:
    2024-12-02
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Sachin D. Mahale;Anamika Prasad;Santosh B. Mhaske
  • 通讯作者:
    Santosh B. Mhaske
Biomechanical investigation of the effect of extracorporeal irradiation on resected human bone.
体外照射对切除人体骨影响的生物力学研究。

Anamika Prasad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anamika Prasad', 18)}}的其他基金

DMREF/Collaborative Research: Active Learning-Based Material Discovery for 3D Printed Solids with Locally-Tunable Electrical and Mechanical Properties
DMREF/协作研究:基于主动学习的材料发现,用于具有局部可调电气和机械性能的 3D 打印固体
  • 批准号:
    2323696
  • 财政年份:
    2023
  • 资助金额:
    $ 53.17万
  • 项目类别:
    Standard Grant
CAREER: Mechanics of Next-Generation Composites using Cellulose and Bioinspired Interfaces
职业:使用纤维素和仿生界面的下一代复合材料的力学
  • 批准号:
    2304788
  • 财政年份:
    2022
  • 资助金额:
    $ 53.17万
  • 项目类别:
    Standard Grant

相似国自然基金

Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
  • 批准号:
    10698836
  • 财政年份:
    2023
  • 资助金额:
    $ 53.17万
  • 项目类别:
CAREER: Electro-Chemo-Mechanics of Multiscale Active Materials for Next-Generation Energy Storage
职业:用于下一代储能的多尺度活性材料的电化学力学
  • 批准号:
    2237990
  • 财政年份:
    2023
  • 资助金额:
    $ 53.17万
  • 项目类别:
    Standard Grant
Assembly and adhesion mechanics of 2D materials for scalable production of next-generation electronics
用于下一代电子产品可扩展生产的二维材料的组装和粘合力学
  • 批准号:
    RGPIN-2021-02664
  • 财政年份:
    2022
  • 资助金额:
    $ 53.17万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Mechanics of Next-Generation Composites using Cellulose and Bioinspired Interfaces
职业:使用纤维素和仿生界面的下一代复合材料的力学
  • 批准号:
    2304788
  • 财政年份:
    2022
  • 资助金额:
    $ 53.17万
  • 项目类别:
    Standard Grant
Assembly and adhesion mechanics of 2D materials for scalable production of next-generation electronics
用于下一代电子产品可扩展生产的二维材料的组装和粘合力学
  • 批准号:
    DGECR-2021-00081
  • 财政年份:
    2021
  • 资助金额:
    $ 53.17万
  • 项目类别:
    Discovery Launch Supplement
Assembly and adhesion mechanics of 2D materials for scalable production of next-generation electronics
用于下一代电子产品可扩展生产的二维材料的组装和粘合力学
  • 批准号:
    RGPIN-2021-02664
  • 财政年份:
    2021
  • 资助金额:
    $ 53.17万
  • 项目类别:
    Discovery Grants Program - Individual
Innovating earthmoving mechanics for next-generation infrastructure
创新下一代基础设施的土方机械
  • 批准号:
    DE160100328
  • 财政年份:
    2016
  • 资助金额:
    $ 53.17万
  • 项目类别:
    Discovery Early Career Researcher Award
NSF IGERT: Training the Next Generation of Researchers in Cellular & Molecular Mechanics and Bionanotechnology
NSF IGERT:培训下一代细胞研究人员
  • 批准号:
    0965918
  • 财政年份:
    2010
  • 资助金额:
    $ 53.17万
  • 项目类别:
    Continuing Grant
Next Generation Forcefield for Internal Coordinate Mechanics
下一代内坐标力学力场
  • 批准号:
    7612513
  • 财政年份:
    2009
  • 资助金额:
    $ 53.17万
  • 项目类别:
Hypermedia Fluid Mechanics: Teaching Modules for the Next Century
超媒体流体力学:下世纪的教学模块
  • 批准号:
    9752199
  • 财政年份:
    1998
  • 资助金额:
    $ 53.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了