CAREER: Machine Learning Methods for Spatial Data with Applications in Ecology

职业:空间数据的机器学习方法及其在生态学中的应用

基本信息

  • 批准号:
    2046678
  • 负责人:
  • 金额:
    $ 56.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Species distribution models (SDMs) are widely used tools in ecology and natural resource management. SDMs are built by correlating observations of a species (e.g., whether it is present or absent) with environmental features. Once built, they can be used to predict how likely a species is to occur at a new site or interpreted to understand why species live where they do. The spatial aspects of species and environmental data present challenges for the machine learning methods often used to build SDMs, and this award focuses on two of those challenges. First, one must assess the quality of an SDM in order to determine the validity of its predictions and interpretation. To assess quality, some data are often held out from model building. Then, the model’s ability to predict the unseen data are used as a measure of its quality. With spatial data however, randomly selecting data to hold out can lead to optimistic bias in quality estimates. This award will support research into methods for assessing model quality that account for spatial characteristics of the data in order to produce unbiased estimates of model quality. A second challenge arises when the data supplied to an SDM come from the growing repositories collected by community science programs. Under-reporting is a common phenomenon in biodiversity surveys (since one typically cannot observe all individuals of all species during an observation), and community science is no exception. The error introduced by under-reporting can be corrected by conducting multiple observations at the same site and estimating the probability of detecting the species, but community science programs are often not structured this way. This award will support research to create groups of multiple observations after the fact, so that under-reporting error can be accounted for better in this growing data resource. In addition to these scientific aims, this award will support education and outreach to graduate, undergraduate, and pre-college students, including the production of a set of benchmark datasets, a new introductory computer science course, and modules for STEM clubs and camps. The research contributions of this award will enable scientists to build better models of spatial phenomena. The anticipated framework for cross-validation that accounts for domain adaptation between training and test folds will produce better generalization performance estimates by accounting for spatial autocorrelation and admitting target testing distributions. In SDM, this means that researchers will be able to correct for bias induced by autocorrelation and provide climate model projections to obtain estimates of how species will fare under global change. In addition, it will define and propose solutions to a new type of spatial clustering problem: creating spatial modeling abstractions aimed at meeting the assumptions of a subsequent modeling phase. In science and management questions informed by SDMs, this will improve the ability to correct for observational errors and translate to better habitat models. The methods will be applicable beyond the motivating applications in SDM to a variety of spatial domains. The education plan will build bridges between ecology and computer science, while drawing on best educational practices to improve recruitment and retention of underserved students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物种分布模型是生态学和自然资源管理中广泛使用的工具。SDM是通过将物种的观察(例如,是否存在)与环境特征。一旦建成,它们可以用来预测一个物种在新地点出现的可能性,或者解释为什么物种生活在它们所生活的地方。物种和环境数据的空间方面对通常用于构建SDM的机器学习方法提出了挑战,该奖项重点关注其中两个挑战。首先,必须评估SDM的质量,以确定其预测和解释的有效性。为了评估质量,一些数据往往是从模型构建。然后,模型预测未知数据的能力被用作其质量的度量。然而,对于空间数据,随机选择数据来支持可能会导致质量估计的乐观偏差。该奖项将支持对模型质量评估方法的研究,这些方法考虑了数据的空间特征,以便对模型质量进行无偏估计。当提供给SDM的数据来自社区科学计划收集的不断增长的知识库时,第二个挑战出现了。低报是生物多样性调查中的一个常见现象(因为在一次观察中通常无法观察到所有物种的所有个体),社区科学也不例外。少报所带来的错误可以通过在同一地点进行多次观测并估计发现物种的概率来纠正,但社区科学计划通常不是这样构建的。该奖项将支持在事后创建多个观察组的研究,以便在这个不断增长的数据资源中更好地解释漏报错误。除了这些科学目标外,该奖项还将支持研究生,本科生和大学预科生的教育和推广,包括制作一套基准数据集,新的入门计算机科学课程以及STEM俱乐部和营地的模块。该奖项的研究贡献将使科学家能够建立更好的空间现象模型。考虑训练和测试折叠之间的域适应的交叉验证的预期框架将通过考虑空间自相关和承认目标测试分布来产生更好的泛化性能估计。在SDM中,这意味着研究人员将能够纠正自相关引起的偏差,并提供气候模型预测,以获得物种在全球变化下的估计。此外,它将定义并提出一种新型的空间聚类问题的解决方案:创建空间建模抽象,旨在满足后续建模阶段的假设。在科学和管理问题中,这将提高对观测误差的纠正能力,并转化为更好的栖息地模型。这些方法将适用于超越SDM中的激励应用程序到各种空间域。该教育计划将在生态学和计算机科学之间建立桥梁,同时借鉴最佳教育实践,以改善对服务不足学生的招聘和保留。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Role of Spatial Clustering Algorithms in Building Species Distribution Models from Community Science Data
空间聚类算法在从社区科学数据构建物种分布模型中的作用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Hutchinson其他文献

Association of Palliative Care Consultations with Goals of Care Conversations and Advance Directive Completion for Patients Admitted with Acute Exacerbations of COPD (S727)
  • DOI:
    10.1016/j.jpainsymman.2019.12.289
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin Jarrett;Isabella Stumpf;Rebecca Hutchinson
  • 通讯作者:
    Rebecca Hutchinson
The impact of the COVID-19 pandemic on people who inject drugs accessing harm reduction services in a rural American state
  • DOI:
    10.1186/s12954-022-00660-2
  • 发表时间:
    2022-07-22
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Kinna Thakarar;Michael Kohut;Rebecca Hutchinson;Rebecca Bell;Hannah E. Loeb;Debra Burris;Kathleen M. Fairfield
  • 通讯作者:
    Kathleen M. Fairfield
When is End-of-Life for Patients with Heart Failure? Challenges in Identifying End-of-Life Create Unique Barriers to Quality Care (GP748)
  • DOI:
    10.1016/j.jpainsymman.2020.04.175
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rebecca Hutchinson;Caitlin Gutheil;Hayley Mandeville;Douglas Sawyer;Paul Han
  • 通讯作者:
    Paul Han
When Is End of Life for Patients with Heart Failure? Challenges in Identifying End of Life Create Unique Barriers to Quality Care (S746)
  • DOI:
    10.1016/j.jpainsymman.2019.12.308
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rebecca Hutchinson;Caitlin Gutheil;Hayley Mandeville;Douglas Sawyer;Paul Han
  • 通讯作者:
    Paul Han
An Assessment of Autonomous Vehicles: Traffic Impacts and Infrastructure Needs—Final Report
自动驾驶汽车评估:交通影响和基础设施需求——最终报告
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Kockelman;S. Boyles;P. Stone;Daniel J. Fagnant;Rahul Patel;M. Levin;Guni Sharon;M. Simoni;Michael Albert;Hagen Fritz;Rebecca Hutchinson;P. Bansal;Gleb B. Domnenko;P. Bujanovic;Bumsik Kim;Elham Pourrahmani;Sudesh Agrawal;Tianxin Li;Josiah P. Hanna;Aqshems Nichols;Jia Li
  • 通讯作者:
    Jia Li

Rebecca Hutchinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca Hutchinson', 18)}}的其他基金

III: Small: Statistical Low-Rank Factorization Tools for Ecological Network Link Prediction
III:小:生态网络链路预测的统计低秩分解工具
  • 批准号:
    1910118
  • 财政年份:
    2019
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Standard Grant
SEES Fellows: Developing Semi-parametric Models, Algorithms, and Tools for Ecological Analysis of Species Biodiversity
SEES 研究员:开发物种生物多样性生态分析的半参数模型、算法和工具
  • 批准号:
    1215950
  • 财政年份:
    2012
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Continuing Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
  • 批准号:
    2337678
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Continuing Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Continuing Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
  • 批准号:
    2337529
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
  • 批准号:
    2339381
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
  • 批准号:
    2340194
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
  • 批准号:
    2341055
  • 财政年份:
    2024
  • 资助金额:
    $ 56.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了