CAREER: Manipulating Topology and Correlations in 2D Heterostructures by Dynamic Structural Control

职业:通过动态结构控制操纵二维异质结构的拓扑和相关性

基本信息

  • 批准号:
    2046849
  • 负责人:
  • 金额:
    $ 66.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Non-Technical Abstract:The way electricity flows in a material depends on how its atoms are arranged. Normally, the arrangement of atoms is frozen in a crystal pattern that cannot be easily changed. This project studies how to dynamically change the crystal pattern in a material, with the goals of controlling the flow of electricity and understanding its quantum properties. The specific materials studied are only a few atoms thick, so-called two-dimensional or “2D” materials. 2D materials can be stacked like sheets of paper and the individual sheets can easily slide and rotate, which changes the internal crystal pattern. The research team is developing techniques to rapidly modify the crystal pattern in a 2D material stack so that the effects on electricity flow can be studied. These studies will be performed in a cryogenic refrigerator at temperatures near absolute zero where the quantum behavior of the electrons carrying the electricity is more apparent. The success of this project will advance knowledge of quantum electrical properties which is key to developing new electronic technologies for computers and wireless communication. This research project will go hand-in-hand with an educational mission focused on mentoring students, increasing participation of students from underrepresented minorities, and public outreach by science demos and physics-based video games.Technical Abstract:Heterostructures of 2-dimensional (2d) materials exhibit a wide range of electronic phenomena that depend sensitively on the physical structure of internal twisted interfaces. The research team has developed techniques to dynamically modify the physical structure of 2d material devices in-situ that are enabled by the low friction sliding between 2d layers. This project proposes to apply these dynamic structural control techniques to (1) investigate dynamic electronic effects that arise from sliding moiré superlattices, and (2) systematically study correlated and topological physics of multi-moiré systems by in-situ control of twist angle and layer displacement. The successful outcome of this research would lead to the development of topological charge pumps for manipulating electrons in insulators, as well as a deeper understanding of how moirés can modify electronic behaviors. The research project will provide a foundation for educational activities focused on training students as independent scientists. The principal investigator will implement a codified Ph.D. curriculum that prepares students for diverse career opportunities, with an emphasis on both technical skills, such as nanofabrication and programming, as well as soft skills, such as management and communication. This training program will serve as a venue for increasing the participation of students who are underrepresented in STEM. Furthermore, this activity includes multiple approaches to increasing public engagement in the sciences, including a high school science summer program, the distribution of quantum materials demos to elementary school students, and the development of physics-based video games.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:电流在材料中流动的方式取决于其原子的排列方式。通常情况下,原子的排列被冻结在一个不能轻易改变的晶体模式中。该项目研究如何动态改变材料中的晶体模式,目标是控制电流并了解其量子特性。研究的特定材料只有几个原子厚,即所谓的二维或“2D”材料。2D材料可以像纸张一样堆叠,单张纸可以很容易地滑动和旋转,从而改变内部晶体图案。该研究小组正在开发技术,以快速修改2D材料堆栈中的晶体图案,以便研究对电流的影响。这些研究将在接近绝对零度的低温冰箱中进行,在那里携带电力的电子的量子行为更加明显。该项目的成功将推进量子电学性质的知识,这是开发计算机和无线通信新电子技术的关键。这个研究项目将携手并进的教育使命,专注于指导学生,增加参与的学生从代表性不足的少数民族,并通过科学演示和基于物理的视频games.Technical Abstract:异质结构的2维(2D)材料表现出广泛的电子现象,敏感地依赖于内部扭曲接口的物理结构。该研究小组已经开发出技术,通过2d层之间的低摩擦滑动来动态修改2d材料设备的物理结构。本项目拟将这些动态结构控制技术应用于(1)研究滑动莫尔超晶格产生的动态电子效应,以及(2)通过原位控制扭曲角和层位移,系统地研究多莫尔系统的相关和拓扑物理。这项研究的成功结果将导致拓扑电荷泵的发展,用于操纵绝缘体中的电子,以及更深入地了解莫尔条纹如何改变电子行为。该研究项目将为侧重于培养学生成为独立科学家的教育活动奠定基础。主要研究者将实施一项编码的博士学位。该课程为学生提供多样化的职业机会,重点是技术技能,如纳米制造和编程,以及软技能,如管理和沟通。 该培训计划将作为一个场所,增加谁是在干代表性不足的学生的参与。此外,该活动还包括多种方法来增加公众对科学的参与,包括高中科学暑期计划,向小学生分发量子材料演示,以及开发基于物理的视频游戏。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Javier Sanchez-Yamagishi其他文献

Metals squeezed to thickness of just two atoms
金属被挤压到只有两个原子那么厚
  • DOI:
    10.1038/d41586-025-00548-8
  • 发表时间:
    2025-03-12
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Javier Sanchez-Yamagishi
  • 通讯作者:
    Javier Sanchez-Yamagishi

Javier Sanchez-Yamagishi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Continuing Grant
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
  • 批准号:
    BB/Y005724/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Research Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Standard Grant
Characterising and Manipulating Triplet Interactions
表征和操纵三重态相互作用
  • 批准号:
    FT230100002
  • 财政年份:
    2024
  • 资助金额:
    $ 66.02万
  • 项目类别:
    ARC Future Fellowships
Understanding and manipulating how Trypanosoma cruzi infects its triatomine insect hosts
了解和操纵克氏锥虫如何感染其锥蝽昆虫宿主
  • 批准号:
    BB/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Research Grant
Manipulating sex determination pathways for pest control
操纵性别决定途径以控制害虫
  • 批准号:
    2869559
  • 财政年份:
    2023
  • 资助金额:
    $ 66.02万
  • 项目类别:
    Studentship
Manipulating normal estrogen physiology as a therapeutic approach in cancer
操纵正常雌激素生理学作为癌症的治疗方法
  • 批准号:
    10561945
  • 财政年份:
    2023
  • 资助金额:
    $ 66.02万
  • 项目类别:
TriMED: Measuring, Modeling and Manipulating Excitability and Disease
TriMED:测量、建模和操纵兴奋性和疾病
  • 批准号:
    10627404
  • 财政年份:
    2023
  • 资助金额:
    $ 66.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了