CAREER: Illuminating structure-property relationships in energy storage materials via quantitative light microscopy

职业:通过定量光学显微镜阐明储能材料的结构-性能关系

基本信息

  • 批准号:
    2046948
  • 负责人:
  • 金额:
    $ 67.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARY.Renewable energy capacity is increasing and expected to meet global energy demand this century. Existing technology will thus ensure the generation of clean, renewable energy. But the storage and rapid delivery of this abundant supply remains a critical unmet challenge. Development of new materials that store large quantities of charge and rapidly deliver it on demand is vital to any global transition to a low- or zero-carbon energy economy. This CAREER award project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, focuses on the study of fundamental materials chemistry to advance design principles for safe, fast-charging, and long-lasting Li-ion battery materials. The research focuses on linking chemical and structural properties of materials with their ability to conduct Li-ions. Fast Li-ion transport is necessary for high power applications that benefit society such as electric vehicles, power tools, and portable electronic devices. PI Sambur’s team gains new insight into Li-ion transport by developing new imaging tools that reveal Li-ion motion at the nanoscale. These microscopic measurements enable the researchers to make strong connections between materials chemistry and critical energy storage performance metrics. Through this project, the PI promotes microscopy education and increase accessibility to microscopy tools among elementary, high school, undergraduate, and graduate-level students. Imaging is an essential skill in all scientific disciplines, but there are few opportunities for students to receive an education in microscopy. One issue is that university chemistry departments and K-12 schools lack microscopy tools to educate large numbers of students. The PI plans to develop low-cost microscopes with experiential learning activities tailored to different age groups to address this critical need. This effort aims to promote science to middle and high school students, particularly underrepresented women and Hispanic/Latinx students in the Colorado STEM education pipeline.TECHNICAL SUMMARY.The major scientific roadblock to a global renewable energy economy is inadequate energy storage materials. Exhaustive research into new battery materials has made clear that future innovation will stem from fundamental materials design principles that are free from the element of art inherent in the fabrication of electrodes. Rather than relying on mix and measure empiricism, single particle measurements can establish materials design principles by linking known solid state chemistry principles to fundamental ion/electron transport processes that determine charge storage capacity and rate. However, such single particle studies are often slow and tedious. This proposal advances high-throughput single particle-level light microscopy and spectroscopy, in conjunction with electron, X-ray, and atom probe tomography techniques, to forge new links between crystal structure modifications, electronic structure, and electrochemical properties. The research focuses on Wadsley-Roth crystallographic shear structures that exhibit extraordinarily fast Li-ion diffusion coefficients in bulk-like (micron) material, signaling that the built-in structural motifs in these complex oxides are the key to unlocking critical design principles for tuning ionic diffusivity. The PI’s team aims to define how Li-ion diffusivity scales with the chemistry, stoichiometry, and block size of Wadsley-Roth compounds. The microscopy tools are used to reveal how the type, concentration, and arrangement of surface facets and Wadsley defects influences electrochemical properties. The methodologies innovated herein will be generally applicable to a wide range of existing materials and those that have yet to be discovered. An expected significant outcome from the structure/property relationships uncovered in this research will be design principles for a safe, high-rate anode material for use in Li-ion batteries. The PI is determined to ensure that the intellectual foundation of this research project has a broad impact on society through the development of low-cost microscopes and activities designed to educate 6th-12th grade students in mapping the functional properties of real-world systems such as solar cells. The activities guide students into a grade-appropriate, working knowledge about how the energy conversion efficiency of hobby-grade solar cells correlates with materials heterogeneity. The PI works closely with STEM experts in Colorado State University’s Natural Science Education Outreach Center to disseminate the kits to middle and high school science labs across Colorado, complementing existing University outreach programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可再生能源能力正在增加,预计将满足本世纪的全球能源需求。因此,现有技术将确保生产清洁的可再生能源。但是,储存和快速交付这一丰富的供应仍然是一个关键的挑战。开发能够储存大量电荷并按需快速输送的新材料,对于全球向低碳或零碳能源经济的过渡至关重要。该职业奖项目由材料研究部的固态和材料化学项目支持,专注于基础材料化学的研究,以推进安全,快速充电和持久的锂离子电池材料的设计原则。该研究的重点是将材料的化学和结构特性与其传导锂离子的能力联系起来。快速锂离子传输对于电动汽车、电动工具和便携式电子设备等造福社会的高功率应用是必要的。PI Sambur的团队通过开发新的成像工具来揭示纳米级的锂离子运动,从而获得了对锂离子传输的新见解。这些微观测量使研究人员能够在材料化学和关键储能性能指标之间建立强有力的联系。通过这个项目,PI促进显微镜教育,增加小学,高中,本科和研究生层次的学生显微镜工具的可及性。成像是所有科学学科的基本技能,但学生很少有机会接受显微镜教育。一个问题是,大学化学系和K-12学校缺乏显微镜工具来教育大量学生。PI计划开发低成本显微镜,并为不同年龄组量身定制体验式学习活动,以满足这一关键需求。这项工作旨在向初中和高中学生,特别是在科罗拉多STEM教育管道中代表性不足的女性和西班牙裔/拉丁裔学生推广科学。技术摘要:全球可再生能源经济的主要科学障碍是储能材料不足。对新电池材料的详尽研究表明,未来的创新将源于基本的材料设计原则,这些原则不受电极制造中固有的艺术元素的影响。单粒子测量可以通过将已知的固态化学原理与确定电荷存储容量和速率的基本离子/电子传输过程相联系来建立材料设计原理,而不是依赖于混合和测量双稳态。然而,这样的单粒子研究通常是缓慢和乏味的。该提案推进了高通量单粒子级光学显微镜和光谱学,结合电子,X射线和原子探针断层扫描技术,以建立晶体结构修饰,电子结构和电化学性能之间的新联系。该研究的重点是Wadsley-Roth晶体学剪切结构,这些结构在块状(微米)材料中表现出非常快的锂离子扩散系数,表明这些复杂氧化物中的内置结构图案是解锁关键设计原则的关键。PI团队的目标是定义锂离子扩散率如何随Wadsley-Roth化合物的化学组成、化学计量和块尺寸而变化。显微镜工具用于揭示表面小平面和Wadsley缺陷的类型,浓度和排列如何影响电化学性能。本文创新的方法将普遍适用于广泛的现有材料和尚未发现的材料。本研究中发现的结构/性能关系的预期重要成果将是用于锂离子电池的安全,高倍率阳极材料的设计原则。PI决心通过开发低成本显微镜和旨在教育6 - 12年级学生绘制真实世界系统(如太阳能电池)功能特性的活动,确保该研究项目的知识基础对社会产生广泛影响。这些活动引导学生进入一个适合年级的工作知识,了解爱好级太阳能电池的能量转换效率如何与材料异质性相关。PI与科罗拉多州立大学自然科学教育外展中心的STEM专家密切合作,向科罗拉多州的初中和高中科学实验室传播工具包,补充现有的大学外展计划。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LBIC Imaging of Solar Cells: An Introduction to Scanning Probe-Based Imaging Techniques
太阳能电池的 LBIC 成像:基于扫描探针的成像技术简介
  • DOI:
    10.1021/acs.jchemed.2c00623
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Marquez, Steven;Varra, Travis;Christensen, Cami;Rajasekharan, Om;Dojan, Carter;Hobbs, Janelle;Otten, Abigail;Salzer, Luke;Schuttlefield Christus, Jennifer D.;Sambur, Justin B.
  • 通讯作者:
    Sambur, Justin B.
Structure–Property Relationships in High-Rate Anode Materials Based on Niobium Tungsten Oxide Shear Structures
  • DOI:
    10.1021/acsaem.2c03573
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Luke D. Salzer;Brian Diamond;Kelly Nieto;R. C. Evans;A. Prieto;J. Sambur
  • 通讯作者:
    Luke D. Salzer;Brian Diamond;Kelly Nieto;R. C. Evans;A. Prieto;J. Sambur
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Justin Sambur其他文献

Justin Sambur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Justin Sambur', 18)}}的其他基金

Quantitative Scattering Microscopy (QSCAT) for Nanoscale Imaging of Ion Insertion Chemistry
用于离子插入化学纳米级成像的定量散射显微镜 (QSCAT)
  • 批准号:
    2204052
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Determination of Single Nanoparticle Catalytic Activity for Solar Fuel Generation in Single Nanowire Photoelectrochemical Cells
单纳米线光电化学电池中太阳能燃料产生的单纳米颗粒催化活性的测定
  • 批准号:
    1137217
  • 财政年份:
    2011
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant

相似海外基金

Illuminating the function regulome of cardiac L-type Ca2+ channels in health and disease
阐明心脏 L 型 Ca2 通道在健康和疾病中的功能调节组
  • 批准号:
    10628916
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
Illuminating the evolutionary history of colorectal cancer metastasis: basic principles and clinical applications
阐明结直肠癌转移的进化史:基本原理和临床应用
  • 批准号:
    10906574
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
Illuminating the evolutionary history of colorectal cancer metastasis: basic principles and clinical applic
阐明结直肠癌转移的进化史:基本原理和临床应用
  • 批准号:
    10515806
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
Gene x Environment Interactions and Congenital Heart Defects – Illuminating the Mechanisms
基因 x 环境相互作用和先天性心脏缺陷 — 阐明机制
  • 批准号:
    10750131
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
Illuminating the path(ophysiology) to development of youth-onset type 2 diabetes (PATH-NC)
阐明青年发病 2 型糖尿病的发展路径(生理学)(PATH-NC)
  • 批准号:
    10582937
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
Harnessing ultra-high resolution MRI to investigate the human claustrum: Illuminating structure, function, and associations with disease
利用超高分辨率 MRI 研究人类屏状体:阐明结构、功能以及与疾病的关联
  • 批准号:
    486860
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Miscellaneous Programs
Illuminating the Dark RNA Virome through ultra-deep homology search
通过超深度同源性搜索照亮暗 RNA 病毒组
  • 批准号:
    478741
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Operating Grants
Illuminating apical extracellular matrix structure and biogenesis
阐明顶端细胞外基质结构和生物发生
  • 批准号:
    10654029
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
Illuminating the essential role of the outer membrane component and drug target, lipopolysaccharide
阐明外膜成分和药物靶点脂多糖的重要作用
  • 批准号:
    10463261
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
Illuminating the mechanisms that generate pattern and shape during growth and regeneration of the zebrafish fin
阐明斑马鱼鳍生长和再生过程中产生图案和形状的机制
  • 批准号:
    10698173
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了