Quantitative Scattering Microscopy (QSCAT) for Nanoscale Imaging of Ion Insertion Chemistry

用于离子插入化学纳米级成像的定量散射显微镜 (QSCAT)

基本信息

  • 批准号:
    2204052
  • 负责人:
  • 金额:
    $ 42.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Measurement and Imaging (CMI) Program in the Division of Chemistry, a research team led by Justin Sambur and Randy Bartels of the Departments of Chemistry and Electrical and Computer Engineering, respectively, at Colorado State University is developing quantitative scattering microscopy, or QSCAT, a new microscopy approach that uses light to quantify the number of ions in a host material. Accurate and precise measurements of ion concentrations are critical to the successful operation and performance of many technological applications that benefit society, including lithium-ion batteries, energy-saving electrochromic “smart” windows, water desalination systems, ion separation membranes, and neuromorphic transistors. The problem with current electrical-based measurement approaches is that one electron detected in the electrical circuit does not always equal one ion inserted in the host material. To address this measurement selectivity problem, the research team will leverage the fact that inserted ions change the way light travels through a material to develop a light scattering-based measurement technique (QSCAT) that exploits the acute relationship between optical and electronic properties of solids. This research project seeks a simple, selective, sensitive, quantitative, and high-throughput optical microscopy technique to quantify ion insertion chemistry at the single nanoparticle-level. The development of QSCAT microscopy has the potential to accelerate materials characterization and, therefore, the discovery and development of functional materials that impact and benefit society. The project provides training opportunities that will help build a diverse scientific workforce, including training opportunities for students from groups that are underrepresented in science.The QSCAT microscopy technique being developed by the research team uses quantitative phase and field amplitude information related to the light that scatters from single particles (or localized regions on a surface) in order to selectively measure ion insertion processes in a host material. This approach isolates the ion-insertion process from all other processes that contribute to the electrochemical current response (for example, double-layer charging, solid electrolyte interphase (SEI) layer formation, corrosion, interfacial charge transfer), and does so via widefield imaging where hundreds of particles can be studied in a single experiment. The intellectual merit of the project will be the development of a robust and simple quantitative phase method that extracts the real and imaginary parts of the optical susceptibly perturbations of an ion insertion host. Because the approach is not a form of interferometric microscopy with coherent laser light, the current state-of-the-art in the field, QSCAT should reduce or eliminate issues such as multiple reflections, surface quality, dust contamination, thermal drift, fluid flow, and sample stability that ultimately limit sensitivity and selectivity. The research has the potential to enable new electroanalytical methods to interrogate charge storage mechanisms and surface chemical processes at the single nanoparticle level by allowing researchers to quickly determine structure-property relationships for systems of interest that cannot be interrogated with current optical microscopy approaches. Understanding higher-level effects, such as how particle morphology and exposed surface facets contribute to reactivity, has the potential to provide critical design principles that could be used to advance materials discovery. The broader impacts of the work include the potential to provide new insights into the behavior of materials that are important for energy storage and other important applications, as well as dissemination of the work through educational and outreach activities related to the research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学部化学测量和成像(CMI)计划的支持下,由科罗拉多州立大学化学系和电气与计算机工程系的Justin Sambur和Randy Bartels领导的研究小组正在开发定量散射显微镜,或QSCAT,这是一种新的显微镜方法,使用光来量化基质材料中的离子数量。准确和精确的离子浓度测量对于许多有益于社会的技术应用的成功运行和性能至关重要,包括锂离子电池、节能电致变色“智能”窗户、海水淡化系统、离子分离膜和神经形态晶体管。当前基于电的测量方法的问题是,电路中检测到的一个电子并不总是等于插入宿主材料中的一个离子。为了解决这个测量选择性问题,研究团队将利用插入的离子改变光穿过材料的方式这一事实,开发一种基于光散射的测量技术(QSCAT),该技术利用固体光学和电子性质之间的密切关系。该研究项目寻求一种简单,选择性,灵敏,定量和高通量的光学显微镜技术,以量化单个纳米颗粒水平的离子插入化学。QSCAT显微镜的发展有可能加速材料表征,从而发现和开发影响和造福社会的功能材料。该项目提供的培训机会将有助于建立一支多样化的科学队伍,研究小组正在开发的QSCAT显微镜技术使用与单个粒子散射光相关的定量相位和场振幅信息(或表面上的局部区域),以便选择性地测量主体材料中的离子插入过程。这种方法将离子插入过程与有助于电化学电流响应的所有其他过程(例如,双层充电、固体电解质界面(SEI)层形成、腐蚀、界面电荷转移)隔离,并且通过宽场成像来实现,其中可以在单个实验中研究数百个颗粒。该项目的智力价值将是一个强大的和简单的定量相位方法,提取的离子插入主机的光学可分辨扰动的真实的和虚部的发展。由于该方法不是一种使用相干激光的干涉显微镜形式,因此QSCAT应减少或消除最终限制灵敏度和选择性的问题,如多次反射,表面质量,灰尘污染,热漂移,流体流动和样品稳定性。该研究有可能使新的电分析方法能够在单个纳米颗粒水平上询问电荷存储机制和表面化学过程,使研究人员能够快速确定当前光学显微镜方法无法询问的感兴趣系统的结构-性质关系。了解更高层次的影响,如颗粒形态和暴露的表面刻面如何促进反应性,有可能提供可用于推进材料发现的关键设计原则。这项工作的更广泛影响包括可能提供对储能和其他重要应用重要的材料行为的新见解,以及通过与研究相关的教育和推广活动传播这项工作。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Justin Sambur其他文献

Justin Sambur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Justin Sambur', 18)}}的其他基金

CAREER: Illuminating structure-property relationships in energy storage materials via quantitative light microscopy
职业:通过定量光学显微镜阐明储能材料的结构-性能关系
  • 批准号:
    2046948
  • 财政年份:
    2021
  • 资助金额:
    $ 42.37万
  • 项目类别:
    Continuing Grant
Determination of Single Nanoparticle Catalytic Activity for Solar Fuel Generation in Single Nanowire Photoelectrochemical Cells
单纳米线光电化学电池中太阳能燃料产生的单纳米颗粒催化活性的测定
  • 批准号:
    1137217
  • 财政年份:
    2011
  • 资助金额:
    $ 42.37万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Stimulated Raman scattering microscopy of three-dimensional models of disease.
疾病三维模型的受激拉曼散射显微镜。
  • 批准号:
    2890204
  • 财政年份:
    2023
  • 资助金额:
    $ 42.37万
  • 项目类别:
    Studentship
EAGER: Establishing Near-Ultraviolet Coherent Anti-Stokes Raman Scattering Microscopy for Highly Sensitive Imaging of Native Biomolecules
EAGER:建立近紫外相干反斯托克斯拉曼散射显微镜,对天然生物分子进行高灵敏成像
  • 批准号:
    2332594
  • 财政年份:
    2023
  • 资助金额:
    $ 42.37万
  • 项目类别:
    Standard Grant
CAREER: Imaging the Chemical Nature of Intracellular Phase Separation by Functional Stimulated Raman Scattering Spectro-microscopy
职业:通过功能受激拉曼散射光谱显微镜对细胞内相分离的化学性质进行成像
  • 批准号:
    2240092
  • 财政年份:
    2023
  • 资助金额:
    $ 42.37万
  • 项目类别:
    Continuing Grant
Measurement of blood drug concentrations by time-resolved stimulated Raman scattering microscopy
通过时间分辨受激拉曼散射显微镜测量血液药物浓度
  • 批准号:
    22H01983
  • 财政年份:
    2022
  • 资助金额:
    $ 42.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scattering near-field microscopy for Fourier transformation spectroscopy in the THz range
太赫兹范围内傅里叶变换光谱的散射近场显微镜
  • 批准号:
    506390191
  • 财政年份:
    2022
  • 资助金额:
    $ 42.37万
  • 项目类别:
    Major Research Instrumentation
Development of 4D Operando Optical Scattering Microscopy to Track Ion Dynamics and Phase Transition in Battery Electrodes
开发 4D Operando 光学散射显微镜来跟踪电池电极中的离子动力学和相变
  • 批准号:
    2606669
  • 财政年份:
    2021
  • 资助金额:
    $ 42.37万
  • 项目类别:
    Studentship
Ultrasensitive HIV viral load quantitation using designer DNA nanostructure capture probes and photonic resonator interference scattering microscopy
使用设计的 DNA 纳米结构捕获探针和光子谐振器干涉散射显微镜进行超灵敏 HIV 病毒载量定量
  • 批准号:
    10196015
  • 财政年份:
    2021
  • 资助金额:
    $ 42.37万
  • 项目类别:
Ultrasensitive HIV viral load quantitation using designer DNA nanostructure capture probes and photonic resonator interference scattering microscopy
使用设计的 DNA 纳米结构捕获探针和光子谐振器干涉散射显微镜进行超灵敏 HIV 病毒载量定量
  • 批准号:
    10331336
  • 财政年份:
    2021
  • 资助金额:
    $ 42.37万
  • 项目类别:
Ultrasensitive HIV viral load quantitation using designer DNA nanostructure capture probes and photonic resonator interference scattering microscopy
使用设计的 DNA 纳米结构捕获探针和光子谐振器干涉散射显微镜进行超灵敏 HIV 病毒载量定量
  • 批准号:
    10541213
  • 财政年份:
    2021
  • 资助金额:
    $ 42.37万
  • 项目类别:
Development of bioorthogonal stimulated Raman scattering microscopy for evaluation of drug biodistribution
开发用于评估药物生物分布的生物正交受激拉曼散射显微镜
  • 批准号:
    2424285
  • 财政年份:
    2020
  • 资助金额:
    $ 42.37万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了