Introducing Numerical Integration-based Variational Approximations for Scalable Inference
引入基于数值积分的变分近似以进行可扩展推理
基本信息
- 批准号:547300-2020
- 负责人:
- 金额:$ 0.51万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Postgraduate Scholarships - Doctoral
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bayesian inference, INLA, Spatial statistics, Survival analysis, Semi-parametric regression, Disease mapping, Global mortality
贝叶斯推断,INLA,空间统计,生存分析,半参数回归,疾病分布,总死亡率
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stringer, Alexander其他文献
Stringer, Alexander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stringer, Alexander', 18)}}的其他基金
Introducing Numerical Integration-based Variational Approximations for Scalable Inference
引入基于数值积分的变分近似以进行可扩展推理
- 批准号:
547300-2020 - 财政年份:2020
- 资助金额:
$ 0.51万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似海外基金
Fredholm Alternative Quadrature: A Novel Framework for Numerical Integration Over Geometrically Complex Domains
Fredholm 替代求积:几何复杂域上数值积分的新颖框架
- 批准号:
2309712 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Standard Grant
Collaborative Research: Novel integration of direct measurements with numerical models for real-time estimation and forecasting of streamflow response to cyclical processes
合作研究:直接测量与数值模型的新颖集成,用于实时估计和预测水流对循环过程的响应
- 批准号:
2139649 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Standard Grant
Collaborative Research: Novel Integration of Direct Measurements with Numerical Models for Real-time Estimation and Forecasting of Streamflow Response to Cyclical Processes
合作研究:直接测量与数值模型的新颖集成,用于实时估计和预测水流对循环过程的响应
- 批准号:
2139663 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Standard Grant
Multiscale experimental and numerical study of the thermomechanical behavior of composite sandwich panels towards the integration of environmental effects to the virtual testing method
复合材料夹芯板热机械行为的多尺度实验和数值研究,将环境影响整合到虚拟测试方法中
- 批准号:
RGPIN-2021-04227 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Linking pyroclastic surge dynamics and deposits through integration of field data, multiphase numerical modeling, and experiments
合作研究:通过现场数据、多相数值模拟和实验的整合,将火山碎屑涌动动力学与沉积物联系起来
- 批准号:
2035649 - 财政年份:2021
- 资助金额:
$ 0.51万 - 项目类别:
Standard Grant
Collaborative Research: Linking pyroclastic surge dynamics and deposits through integration of field data, multiphase numerical modeling, and experiments
合作研究:通过现场数据、多相数值模拟和实验的整合,将火山碎屑涌动动力学与沉积物联系起来
- 批准号:
2035260 - 财政年份:2021
- 资助金额:
$ 0.51万 - 项目类别:
Standard Grant
Multiscale experimental and numerical study of the thermomechanical behavior of composite sandwich panels towards the integration of environmental effects to the virtual testing method
复合材料夹芯板热机械行为的多尺度实验和数值研究,将环境影响整合到虚拟测试方法中
- 批准号:
RGPIN-2021-04227 - 财政年份:2021
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Linking pyroclastic surge dynamics and deposits through integration of field data, multiphase numerical modeling, and experiments
合作研究:通过现场数据、多相数值模拟和实验的整合,将火山碎屑涌动动力学与沉积物联系起来
- 批准号:
2034788 - 财政年份:2021
- 资助金额:
$ 0.51万 - 项目类别:
Standard Grant
Multiscale experimental and numerical study of the thermomechanical behavior of composite sandwich panels towards the integration of environmental effects to the virtual testing method
复合材料夹芯板热机械行为的多尺度实验和数值研究,将环境影响整合到虚拟测试方法中
- 批准号:
DGECR-2021-00276 - 财政年份:2021
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Launch Supplement
Discrete integration by parts on any convex polygon and design of structure-preserving numerical schemes
任意凸多边形上的分部离散积分及保结构数值格式的设计
- 批准号:
20K20883 - 财政年份:2020
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)