CAREER: Learning to Sense: Joint Learning of Task Oriented Cognitive Sensing with Data Driven Reconstruction and Inference

职业:学习感知:面向任务的认知感知与数据驱动的重建和推理的联合学习

基本信息

  • 批准号:
    2047771
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-15 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Sensors are an indispensable part of our lives, assisting society’s transportation, health, safety, and communication needs. Conventional sensing approaches acquire data in a fixed fashion, independent of the task for which the data is being utilized. In addition, each of data acquisition, reconstruction and inference blocks in the data processing pipeline is independent of one another and optimized separately. This approach has led to exponential rates of data generation that creates an unbearable demand for power, storage, processing, and communication requirements in today’s sensing systems. The goal of this project is to advance the science of learning-based sensing and processing technologies by developing an adaptive, task-oriented and physics-aware data-to-decision pipeline, which jointly optimizes data acquisition, reconstruction, and inference stages in a data-driven learning framework. The proposed research will establish the foundations of future smart, adaptive, and resource-efficient sensing systems for a variety of applications, including biomedical imaging, remote sensing, radar, and wireless communications.This project has three interconnected objectives (i) Developing learning-based physics-aware multi-dimensional signal reconstruction techniques through foundational relations to regularized inverse problems and explainable architectures inspired from existing signal processing models, (ii) Developing mathematical and learning-based adaptive and task-oriented measurement design approaches with jointly optimized sensing, reconstruction and processing blocks, and demonstrate its impacts on real-world problems, (iii) Developing a learning-based data-to-decision framework, which infers actionable information (classification, parameter estimation) directly from low number of learned measurements. The central theme of planned synergistic educational and outreach activities is to increase the scientific literacy of both the K-12 and university students and the public regarding sensing systems, signal processing, and machine learning. Because sensing technologies are on the frontier of how information is perceived and extracted, and are essential to a wide range of applications, this project will have a high impact on sensing technologies being developed to improve the quality of our daily lives, ranging from applications of cameras to biomedical imaging, or from smart home technologies to autonomous vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传感器是我们生活中不可或缺的一部分,有助于满足社会的交通、健康、安全和通信需求。传统的感测方法以固定的方式获取数据,与数据被利用的任务无关。此外,数据处理流水线中的数据采集、重构和推理块中的每一个都是彼此独立的并且单独优化。这种方法导致了数据生成的指数速率,这在当今的传感系统中对功率、存储、处理和通信要求产生了难以承受的需求。该项目的目标是通过开发自适应,面向任务和物理感知的数据决策管道来推进基于学习的传感和处理技术的科学,该管道在数据驱动的学习框架中共同优化数据采集,重建和推理阶段。拟议的研究将为未来智能、自适应和资源高效的传感系统奠定基础,用于各种应用,包括生物医学成像、遥感、雷达,该项目有三个相互关联的目标:(i)开发基于学习的物理感知的多通过正则化逆问题的基本关系和可解释的架构,现有的信号处理模型,(ii)开发数学和基于学习的自适应和面向任务的测量设计方法,联合优化传感,重建和处理模块,并展示其对现实世界问题的影响,(iii)开发基于学习的数据决策框架,直接从少量的学习测量中推断可操作的信息(分类,参数估计)。计划的协同教育和推广活动的中心主题是提高K-12和大学生以及公众在传感系统,信号处理和机器学习方面的科学素养。由于传感技术处于如何感知和提取信息的前沿,并且对于广泛的应用至关重要,因此该项目将对正在开发的传感技术产生重大影响,以提高我们的日常生活质量,从相机应用到生物医学成像,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data Driven Learning of Constrained Measurement Matrices for Signal Reconstruction
用于信号重建的约束测量矩阵的数据驱动学习
  • DOI:
    10.1109/ieeeconf53345.2021.9723098
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mdrafi, Robiulhossain;Gurbuz, Ali Cafer
  • 通讯作者:
    Gurbuz, Ali Cafer
Radar-Lidar Fusion for Classification of Traffic Signaling Motion in Automotive Applications
雷达-激光雷达融合用于汽车应用中交通信号运动分类
A Deep Learning-Based Soil Moisture Estimation in Conus Region Using Cygnss Delay Doppler Maps
使用 Cygnss 延迟多普勒图进行基于深度学习的圆锥区域土壤湿度估计
Quasi-Global Assessment of Deep Learning-Based CYGNSS Soil Moisture Retrieval
SMAP Radiometer RFI Prediction with Deep Learning using Antenna Counts
SMAP 辐射计 RFI 使用天线计数进行深度学习预测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ali Gurbuz其他文献

The post-pericardiotomy syndrome causing cardiac tamponade and pleural effusion in a patient that underwent mitral valve replacement
  • DOI:
    10.1186/1749-8090-10-s1-a112
  • 发表时间:
    2015-12-16
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Kazim Ergunes;Hasan Iner;Ismail Yurekli;Orhan Gokalp;Ufuk Yetkin;Ali Gurbuz
  • 通讯作者:
    Ali Gurbuz
Predictors of prolonged intensive care unit stay in patients undergoing coronary surgery
  • DOI:
    10.1007/s12055-014-0288-7
  • 发表时间:
    2014-07-05
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Kazim Erguneş;Levent Yilik;Ismail Yurekli;Ufuk Yetkin;Yuksel Besir;Nagahan Karahan;Serkan Yazman;Ali Gurbuz
  • 通讯作者:
    Ali Gurbuz
Axillary Artery Transection After Shoulder Dislocation
  • DOI:
    10.1016/j.avsg.2013.04.002
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kazim Ergüneş;Serkan Yazman;Ufuk Yetkin;Volkan Cakır;Ali Gurbuz
  • 通讯作者:
    Ali Gurbuz
What Kind of Incision Should be Used in Thoracic Trauma Patients in Emergent Cases?
  • DOI:
    10.1007/s00268-016-3435-z
  • 发表时间:
    2016-02-22
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Orhan Gokalp;Nihan Karakas Yesilkaya;Yuksel Besir;Gamze Gokalp;Mehmet Balkanay;Levent Yilik;Yasar Gokkurt;Ali Gurbuz
  • 通讯作者:
    Ali Gurbuz
A Novel Multi-Planed Mechanical Aortic Valve for Increasing the Effective Orifice Area
  • DOI:
    10.1016/j.hlc.2006.02.014
  • 发表时间:
    2006-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mert Kestelli;Cengiz Ozbek;Banu Akdag Lafci;Levent Yilik;Ibrahim Ozsöyler;Bilgin Emrecan;Sahin Bozok;Ali Gurbuz
  • 通讯作者:
    Ali Gurbuz

Ali Gurbuz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ali Gurbuz', 18)}}的其他基金

Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332661
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Small: Collaborative Research: RF Sensing for Sign Language Driven Smart Environments
CPS:小型:协作研究:手语驱动智能环境的射频传感
  • 批准号:
    1931861
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

面向学习者作业认知负荷的智能行为感 知与分层调节机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
面向可拓展联邦学习的通感算融合理论和技术
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于近红外脑功能成像的机器学习在针灸治疗感音神经性耳鸣疗效预测中的应用探索
  • 批准号:
    LTGY23H270003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
应用热感成像和深度学习模型实时检测奶牛隐性乳房炎
  • 批准号:
    32211530481
  • 批准年份:
    2022
  • 资助金额:
    9.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
在线学习中学业幸福感的模型、自动测量及干预研究
  • 批准号:
    21ZR1419100
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于沉浸式虚拟现实环境的感觉-运动交互对外语词汇学习的影响及其脑机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
机器学习指导的高能低感炸药分子设计与定向合成
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
基于沉浸式虚拟现实环境的感觉—运动交互对外语词汇学习的影响及其脑机制
  • 批准号:
    62107024
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于“感存算一体化”架构的忆阻神经网络及其在情感计算中的应用研究
  • 批准号:
    LQ21F010009
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于GWAS与eQTL数据整合的复杂疾病易感基因定位及其功能分析
  • 批准号:
    62002243
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Supporting STEM Student Retention through Development of a Sense of Belonging and Self-Regulated Learning Strategies
通过培养归属感和自我调节学习策略来支持 STEM 学生的保留
  • 批准号:
    2235705
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Robust aesthetic design using deep learning with consideration of variations in customer Kansei evaluation and inter-customer Kansei variation
使用深度学习进行稳健的美学设计,考虑客户感性评估的变化和客户间感性变化
  • 批准号:
    23K11749
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Verify the effectiveness of sensory learning by tactile simulation learning tools
通过触觉模拟学习工具验证感官学习的有效性
  • 批准号:
    23K09840
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding the transmission dynamics of norovirus with microbial data in wastewater and machine learning algorithms
利用废水中的微生物数据和机器学习算法了解诺如病毒的传播动力学
  • 批准号:
    22KJ2358
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development and practice of an infectious diseases program for cross-curricular learning
跨课程学习传染病项目的开发和实践
  • 批准号:
    23K02336
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
"Common Sense" and flexible learning in AI agents: Do current AI agents possess the "basic skills" necessary for them to enter the workforce?
AI智能体的“常识”和灵活学习:当前的AI智能体是否具备进入劳动力市场所需的“基本技能”?
  • 批准号:
    2884814
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
More real than reality: using deep learning networks to resolve how people make sense of other people's behaviour
比现实更真实:使用深度学习网络来解决人们如何理解他人行为的问题
  • 批准号:
    2889133
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Development of production system using machine learning method for the made-to-order 3D design by linguistic expression
使用机器学习方法开发生产系统,通过语言表达进行定制 3D 设计
  • 批准号:
    22H00956
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effects of Beliefs About Language Learning on English Communicative Competence
语言学习信念对英语交际能力的影响
  • 批准号:
    22K00719
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vocal learning as a basis for empathy and mutual trust
声乐学习是同理心和相互信任的基础
  • 批准号:
    22K18661
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了