CAREER: New Challenges in High-Dimensional and Nonparametric Statistics
职业:高维和非参数统计的新挑战
基本信息
- 批准号:2048028
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Contemporary techniques for analysis of complex high-dimensional data sets give rise to numerous questions about fundamental concepts in statistics, data science, and related fields. In this project, the PI will address challenging open questions in high-dimensional and nonparametric statistics motivated by practical applications in finance, engineering, and life sciences. The project is focused on development of new methods of statistical inference for complex data sets providing high accuracy and explicit theoretical guarantees. This includes (i) development of a novel framework for statistical inference that will considerably extend the range of applicability of some of the major statistical methods; (ii) studies of performance of resampling methods in a high-dimensional framework; and (iii) studies of intrinsic properties of high-dimensional models that ensure good performance of the statistical methods. The educational component of the project includes mentorship of graduate and undergraduate students, summer camps in statistics and data science for STEM-oriented high school students, and a workshop/graduate school on high-dimensional statistics and learning theory for junior researchers. Special attention will be given to supporting students and researchers from underrepresented minorities.The project is focused on two major research themes. The first theme is concerned with establishing non-asymptotic higher-order expansions for various distances between probability distributions, with a particular focus on problems and applications in a high-dimensional non-asymptotic setting. The PI will study characteristic properties that are crucial for establishing accurate approximation bounds in high dimensions, such as the normal approximation and bootstrapping and their relations and optimality properties. Another major theme of the project is development of a novel framework for statistical inference based on nonlinear modeling and its applications to nonparametric inference, functional estimation, and inference for models involving heavy-tailed distributions. The approach combines both parametric and nonparametric components, which can avoid severe model misspecification and establish good rates of approximation. The PI aims at conducting a comprehensive study of the new higher-order approximation bounds and the nonlinear modeling approach. The project includes development of new mathematical methods for statistical inference and studies of their connections with other areas of mathematics, such as high-dimensional probability, stochastic modeling, and uncertainty quantification.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代分析复杂高维数据集的技术引发了许多关于统计学、数据科学和相关领域基本概念的问题。在这个项目中,PI将解决高维和非参数统计中具有挑战性的开放问题,这些问题是由金融、工程和生命科学中的实际应用所驱动的。该项目的重点是为复杂的数据集开发新的统计推断方法,提供高精度和明确的理论保证。这包括:(1)开发一个新的统计推断框架,这将大大扩大一些主要统计方法的适用范围;(2)研究重抽样方法在高维框架中的性能;(3)研究确保统计方法良好性能的高维模型的内在属性。该项目的教育部分包括对研究生和本科生的指导,面向STEM的高中生的统计和数据科学夏令营,以及为初级研究人员举办的关于高维度统计和学习理论的讲习班/研究生院。将特别注意支持来自代表性不足的少数群体的学生和研究人员。该项目侧重于两个主要的研究主题。第一个主题是关于建立概率分布之间的各种距离的非渐近高阶展开式,特别关注高维非渐近环境下的问题和应用。PI将研究对于建立高维精确逼近界至关重要的特征性质,例如正态逼近和自举以及它们之间的关系和最优性性质。该项目的另一个主要主题是开发一个新的基于非线性建模的统计推断框架,并将其应用于非参数推断、函数估计和涉及重尾分布的模型的推断。该方法结合了参数分量和非参数分量,可以避免严重的模型误指定,并建立良好的逼近速度。PI旨在对新的高阶逼近界和非线性建模方法进行全面的研究。该项目包括为统计推断开发新的数学方法,并研究它们与其他数学领域的联系,如高维概率、随机建模和不确定性量化。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New Edgeworth-type expansions with finite sample guarantees
具有有限样本保证的新埃奇沃斯型展开
- DOI:10.1214/22-aos2192
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhilova, Mayya
- 通讯作者:Zhilova, Mayya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mayya Zhilova其他文献
Mayya Zhilova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mayya Zhilova', 18)}}的其他基金
The Weighted Bootstrap and Berry-Esseen Bounds in High Dimensions
高维中的加权 Bootstrap 和 Berry-Esseen 界
- 批准号:
1712990 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Modelling the rheology of biopolymers and sustainable food systems: exploring new challenges for soft matter research
生物聚合物和可持续食品系统的流变学建模:探索软物质研究的新挑战
- 批准号:
EP/X014738/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
CAREER: New Challenges in Statistical Genetics: Mendelian Randomization, Integrated Omics and General Methodology
职业:统计遗传学的新挑战:孟德尔随机化、综合组学和通用方法论
- 批准号:
2238656 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Political Debasement in Japan and Its Challenges: New Directions in the Study of Deliberative Political Communication
日本的政治堕落及其挑战:协商政治传播研究的新方向
- 批准号:
23K01245 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AF: Small: New Challenges and Approaches in Clustering Algorithms
AF:小:聚类算法的新挑战和方法
- 批准号:
2311397 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: New Challenges in Analysis of Boolean Functions
职业:布尔函数分析的新挑战
- 批准号:
2239160 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Human Developmental Biology Resource (HDBR): meeting new trends and challenges in developmental biobanking
人类发育生物学资源(HDBR):应对发育生物样本库的新趋势和挑战
- 批准号:
MR/X008304/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
New Phase Field Models for Unravelling Multi-Physics Material Degradation Challenges (NEWPHASE)
用于解决多物理材料降解挑战的新相场模型 (NEWPHASE)
- 批准号:
MR/V024124/2 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Fellowship
New Challenges in Wireless Systems
无线系统的新挑战
- 批准号:
RGPIN-2020-04188 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
NEW CHALLENGES FOR OCCUPATIONAL SAFETY AND HEALTH IN TIMES OF THE DIGITAL TRANSFORMATION IN EUROPE: THE ROLE OF DIGITAL LABOUR PLATFORMS
欧洲数字化转型时期职业安全与健康的新挑战:数字化劳动力平台的作用
- 批准号:
ES/X006301/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant